ترغب بنشر مسار تعليمي؟ اضغط هنا

Approaching the Limits of Transparency and Conductivity in Graphitic Materials through Lithium Intercalation

265   0   0.0 ( 0 )
 نشر من قبل Wenzhong Bao
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various bandstructure engineering methods have been studied to improve the performance of graphitic transparent conductors; however none demonstrated an increase of optical transmittance in the visible range. Here we measure in situ optical transmittance spectra and electrical transport properties of ultrathin-graphite (3-60 graphene layers) simultaneously via electrochemical lithiation/delithiation. Upon intercalation we observe an increase of both optical transmittance (up to twofold) and electrical conductivity (up to two orders of magnitude), strikingly different from other materials. Transmission as high as 91.7% with a sheet resistance of 3.0 {Omega} per square is achieved for 19-layer LiC6, which corresponds to a figure of merit {sigma}_dc/{sigma}_opt = 1400, significantly higher than any other continuous transparent electrodes. The unconventional modification of ultrathin-graphite optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge. Our techniques enable the investigation of other aspects of intercalation in nanostructures.

قيم البحث

اقرأ أيضاً

Lithium-intercalated layered transition-metal oxides, LixTMO2, brought about a paradigm change in rechargeable batteries in recent decades and show promise for use in memristors, a type of device for future neural computing and on-chip storage. Therm al transport properties, although being a crucial element in limiting the charging/discharging rate, package density, energy efficiency, and safety of batteries as well as the controllability and energy consumption of memristors, are poorly managed or even understood yet. Here, for the first time, we employ quantum calculations including high-order lattice anharmonicity and find that the thermal conductivity k of LixTMO2 materials is significantly lower than hitherto believed. More specifically, the theoretical upper limit of k of LiCoO2 is 6 W/m-K, 2-6 times lower than the prior theoretical predictions. Delithiation further reduces k by 40-70% for LiCoO2 and LiNbO2. Grain boundaries, strains, and porosity are yet additional causes of thermal-conductivity reduction, while Li-ion diffusion and electrical transport are found to have only a minor effect on phonon thermal transport. The results elucidate several long-standing issues regarding the thermal transport in lithium-intercalated materials and provide guidance toward designing high-energy-density batteries and controllable memristors.
103 - Yuri Kornyushin 2009
A composite conductive material, which consists of fibers of a high conductivity in a matrix of low conductivity, is discussed. The effective conductivity of the system considered is calculated in Clausius-Mossotti approximation. Obtained relationshi ps can be used to calculate the conductivity of a matrix, using experimentally measured parameters. Electric fields in the matrix and the inclusions are calculated. It is shown that the field in a low-conductivity matrix can be much higher than the external applied one.
The high breakdown current densities and resilience to scaling of the metallic transition metal trichalcogenides TaSe3 and ZrTe3 make them of interest for possible interconnect applications, and it motivates this study of their thermal conductivities and phonon properties. These crystals consist of planes of strongly bonded one-dimensional chains more weakly bonded to neighboring chains. Phonon dispersions and the thermal conductivity tensors are calculated using density functional theory combined with an iterative solution of the phonon Boltzmann transport equation. The phonon velocities and the thermal conductivities of TaSe3 are considerably more anisotropic than those of ZrTe3. The maximum LA velocity in ZrTe3 occurs in the cross-chain direction, and this is consistent with the strong cross-chain bonding that gives rise to large Fermi velocities in that direction. The thermal conductivities are similar to those of other metallic two-dimensional transition metal dichalcogenides. At room temperature, a significant portion of the heat is carried by the optical modes. In the low frequency range, the phonon lifetimes and mean free paths in TaSe3 are considerably shorter than those in ZrTe3. The shorter lifetimes in TaSe3 are consistent with the presence of lower frequency optical branches and zone-folding features in the acoustic branches that arise due to the doubling of the TaSe3 unit cell within the plane.
We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, includin g visible and near-infrared light. The energy of photo-generated non-equilibrium or hot charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE) through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows.
X-ray amorphous manganese oxides were prepared by reduction of sodium permanganate by lithium iodide in aqueous medium (MnOx-I) and by decomposition of manganese carbonate at moderate temperature (MnOx-C). TEM showed that these materials are not amor phous, but nanostructured, with a prominent spinel substructure in MnOx-C. These materials intercalate lithium with capacities up to 200 mAh/g at first cycle (potential window 1.8-4.3 V) and 175 mAh/g at 100th cycle. Best performances for MnOx-C are obtained with cobalt doping. Potential electrochemical spectroscopy shows that the initial discharge induces a 2-phase transformation in MnOx-C phases, but not in MnOx-I ones. EXAFS and XANES confirm the participation of manganese in the redox process, with variations in local structure much smaller than in known long-range crystallized manganese oxides. X-ray absorption spectroscopy also shows that cobalt in MnOx-C is divalent and does not participate in the electrochemical reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا