ﻻ يوجد ملخص باللغة العربية
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k --> 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, d, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
For optimal processing and design of entangled polymeric materials it is important to establish a rigorous link between the detailed molecular composition of the polymer and the viscoelastic properties of the macroscopic melt. We review current and p
We present a theoretical approach to scale the artificially fast dynamics of simulated coarse-grained polymer liquids down to its realistic value. As coarse-graining affects entropy and dissipation, two factors enter the rescaling: inclusion of intra
We propose a dynamic coarse-graining (CG) scheme for mapping heterogeneous polymer fluids onto extremely CG models in a dynamically consistent manner. The idea is to use as target function for the mapping a wave-vector dependent mobility function der
We propose and illustrate an approach to coarse-graining the dynamics of evolving networks (networks whose connectivity changes dynamically). The approach is based on the equation-free framework: short bursts of detailed network evolution simulations
We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted a