ﻻ يوجد ملخص باللغة العربية
We propose a dynamic coarse-graining (CG) scheme for mapping heterogeneous polymer fluids onto extremely CG models in a dynamically consistent manner. The idea is to use as target function for the mapping a wave-vector dependent mobility function derived from the single-chain dynamic structure factor, which is calculated in the microscopic reference system. In previous work, we have shown that dynamic density functional calculations based on this mobility function can accurately reproduce the order/disorder kinetics in polymer melts, thus it is a suitable starting point for dynamic mapping. To enable the mapping over a range of relevant wave vectors, we propose to modify the CG dynamics by introducing internal friction parameters that slow down the CG monomer dynamics on local scales, without affecting the static equilibrium structure of the system. We illustrate and discuss the method using the example of infinitely long linear Rouse polymers mapped onto ultrashort CG chains. We show that our method can be used to construct dynamically consistent CG models for homopolymers with CG chain length N=4, whereas for copolymers, longer CG chain lengths are necessary
For optimal processing and design of entangled polymeric materials it is important to establish a rigorous link between the detailed molecular composition of the polymer and the viscoelastic properties of the macroscopic melt. We review current and p
The dynamical cluster approximation (DCA) and its DCA$^+$ extension use coarse-graining of the momentum space to reduce the complexity of quantum many-body problems, thereby mapping the bulk lattice to a cluster embedded in a dynamical mean-field hos
Soft nanocomposites represent both a theoretical and an experimental challenge due to the high number of the microscopic constituents that strongly influence the behaviour of the systems. An effective theoretical description of such systems invokes a
We analyze Lindblad-Gorini-Kossakowski-Sudarshan-type generators for selected periodically driven open quantum systems. All these generators can be obtained by temporal coarse-graining procedures, and we compare different coarse-graining schemes. Sim
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j