ﻻ يوجد ملخص باللغة العربية
A detailed low-energy electronic structure of a Kondo insulator YbB$_{12}$ was revealed by a synergetic combination of ultrahigh-resolution laser photoemission spectroscopy (PES) and time-resolved PES. The former confirmed a 25-meV pseudogap corresponding to the Kondo temperature of this material, and more importantly, it revealed that a 15-meV gap and a Kondo-peak feature developed below a crossover temperature $T^ast sim 110$ K. In harmony with this, the latter discovered a very long recombination time exceeding 100 ps below $sim$$T^ast$. This is a clear manifestation of photoexcited carriers due to the bottleneck in the recovery dynamics, which is interpreted as a developing hybridization gap of a hard gap.
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap, E$_{g}$, resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation d
Kondo insulators have recently aroused great interest because they are promising materials that host a topological insulator state caused by the strong electron interactions. Moreover, recent observations of the quantum oscillations in the insulating
We report time- and angle-resolved photoemission spectroscopy measurements on the topological insulator Bi2Se3. We observe oscillatory modulations of the electronic structure of both the bulk and surface states at a frequency of 2.23 THz due to coher
A necessary element for the predicted topological state in Kondo insulator SmB$_6$ is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacan
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CcmMnIn3m+2n (with M =Co, Rh, Ir, and Pt, m=l, 2, n=0 - 2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Thr