ﻻ يوجد ملخص باللغة العربية
We give a probabilistic interpretation of the Monte Carlo scheme proposed by Fahim, Touzi and Warin [Ann. Appl. Probab. 21 (2011) 1322-1364] for fully nonlinear parabolic PDEs, and hence generalize it to the path-dependent (or non-Markovian) case for a general stochastic control problem. A general convergence result is obtained by a weak convergence method in the spirit of Kushner and Dupuis [Numerical Methods for Stochastic Control Problems in Continuous Time (1992) Springer]. We also get a rate of convergence using the invariance principle technique as in Dolinsky [Electron. J. Probab. 17 (2012) 1-5], which is better than that obtained by viscosity solution method. Finally, by approximating the conditional expectations arising in the numerical scheme with simulation-regression method, we obtain an implementable scheme.
This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, wit
This paper provides convergence analysis for the approximation of a class of path-dependent functionals underlying a continuous stochastic process. In the first part, given a sequence of weak convergent processes, we provide a sufficient condition fo
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likeliho
In this article, we adapt the definition of viscosity solutions to the obstacle problem for fully nonlinear path-dependent PDEs with data uniformly continuous in $(t,omega)$, and generator Lipschitz continuous in $(y,z,gamma)$. We prove that our defi
In this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative