ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformed Auto-correlation

43   0   0.0 ( 0 )
 نشر من قبل Jianfeng Zhou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A transformed auto-correlation method is presented here, where a received signal is transformed based on a priori reflecting model, and then the transformed signal is cross-correlated to its original one. If the model is correct, after transformation, the reflected signal will be coherent to the transmitted signal, with zero delay. A map of transformed auto-correlation function with zero delay can be generated in a given parametric space. The significant peaks in the map may indicate the possible reflectors nearby the central transmitter. The true values of the parameters of reflectors can be estimated at the same time.

قيم البحث

اقرأ أيضاً

The spatial clustering of active galactic nuclei (AGNs) is considered to be one of the important diagnostics for the understanding of the underlying processes behind their activities complementary to measurements of the luminosity function (LF). We a nalyse the AGN clustering from a recent semi-analytic model performed on a large cosmological $N$-body simulation covering a cubic gigaparsec comoving volume. We have introduced a new time-scale of gas accretion on to the supermassive black holes to account for the loss of the angular momentum on small scales, which is required to match the faint end of the observed X-ray LF. The large simulation box allows us accurate determination of the auto-correlation function of the AGNs. The model prediction indicates that this time-scale plays a significant role in allowing massive haloes to host relatively faint population of AGNs, leading to a higher bias factor for those AGNs. The model predictions are in agreement with observations of X-ray selected AGNs in the luminosity range $10^{41.5}~mathrm{erg} mathrm{s}^{-1} leq L_{2-10mathrm{keV}} leq 10^{44.5}~mathrm{erg} mathrm{s}^{-1}$, with the typical host halo mass of $10^{12.5-13.5} h^{-1},{rm M}_{odot}$ at $z lesssim 1$. This result shows that the observational clustering measurements impose an independent constraint on the accretion time-scale complementary to the LF measurements. Moreover, we find that not only the effective halo mass corresponding to the overall bias factor, but the extended shape of the predicted AGN correlation function shows remarkable agreement with those from observations. Further observational efforts towards the low luminosity end at $z sim 1$ would give us stronger constraints on the triggering mechanisms of AGN activities through their clustering.
Producing images from interferometer data requires accurate modeling of the sources in the field of view, which is typically done using the CLEAN algorithm. Given the large number of degrees of freedom in interferometeric images, one constrains the p ossible model solutions for CLEAN by masking regions that contain emission. Traditionally this process has largely been done by hand. This approach is not possible with todays large data volumes which require automated imaging pipelines. This paper describes an automated masking algorithm that operates within CLEAN called AUTO-MULTITHRESH. This algorithm was developed and validated using a set of ~1000 ALMA images chosen to span a range of intrinsic morphology and data characteristics. It takes a top-down approach to producing masks: it uses the residual images to identify significant peaks and then expands the mask to include emission associated with these peaks down to lower signal-to-noise noise. The AUTO-MULTITHRESH algorithm has been implemented in CASA and has been used in production as part of the ALMA Imaging Pipeline starting with Cycle 5. It has been shown to be able to mask a wide range of emission ranging from simple point sources to complex extended emission with minimal tuning of the parameters based on the point spread function of the data. Although the algorithm was developed for ALMA, it is general enough to have been used successfully with data from other interferometers with appropriate parameter tuning. Integrating the algorithm more deeply within the minor cycle could lead to future performance improvements.
Balloon-borne telescopes present unique thermal design challenges which are a combination of those present for both space and ground telescopes. At altitudes of 35-40 km, convection effects are minimal and difficult to characterize. Radiation and con duction are the predominant heat transfer mechanisms reducing the thermal design options. For long duration flights payload mass is a function of power consumption making it an important optimization parameter. SuperBIT, or the Super-pressure Balloon-borne Imaging Telescope, aims to study weak lensing using a 0.5m modified Dall-Kirkham telescope capable of achieving 0.02 stability and capturing deep exposures from visible to near UV wavelengths. To achieve the theoretical stratospheric diffraction-limited resolution of 0.25, mirror deformation gradients must be kept to within 20nm. The thermal environment must thus be stable on time scales of an hour and the thermal gradients must be minimized on the telescope. SuperBIT plans to implement two types of parameter solvers; one to validate the thermal design and the other to tightly control the thermal environment.
Despite super-resolution fluorescence blinking microscopes break the diffraction limit, the intense phototoxic illumination and long-term image sequences thus far still pose to major challenges in visualizing live-organisms. Here, we proposed a super -resolution method based on auto-correlation two-step deconvolution (SACD) to enhance the temporal resolution at lower signal intensity levels. Unlike conventional techniques, such as super-resolution optical fluctuation imaging (SOFI) or stochastic optical reconstruction microscopy (STORM), our model allows 16 frames to generate super-resolution images, without noticeable degradation in recording quality. We demonstrate SACD both in simulated predictions and experimental validations, with the resulting spatial resolution of 64 nm and 2-10 fold speed improvements. The use of low signal-to-noise ratio acquisition of image sequences, our SACD enables fast, background-free, super-resolution imaging that maybe advance implemented as a suitable tool for rapid live-cells imaging.
Transformed Generalized Autoregressive Moving Average (TGARMA) models were recently proposed to deal with non-additivity, non-normality and heteroscedasticity in real time series data. In this paper, a Bayesian approach is proposed for TGARMA models, thus extending the original model. We conducted a simulation study to investigate the performance of Bayesian estimation and Bayesian model selection criteria. In addition, a real dataset was analysed using the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا