ﻻ يوجد ملخص باللغة العربية
Balloon-borne telescopes present unique thermal design challenges which are a combination of those present for both space and ground telescopes. At altitudes of 35-40 km, convection effects are minimal and difficult to characterize. Radiation and conduction are the predominant heat transfer mechanisms reducing the thermal design options. For long duration flights payload mass is a function of power consumption making it an important optimization parameter. SuperBIT, or the Super-pressure Balloon-borne Imaging Telescope, aims to study weak lensing using a 0.5m modified Dall-Kirkham telescope capable of achieving 0.02 stability and capturing deep exposures from visible to near UV wavelengths. To achieve the theoretical stratospheric diffraction-limited resolution of 0.25, mirror deformation gradients must be kept to within 20nm. The thermal environment must thus be stable on time scales of an hour and the thermal gradients must be minimized on the telescope. SuperBIT plans to implement two types of parameter solvers; one to validate the thermal design and the other to tightly control the thermal environment.
Balloon experiments are an economically feasible method of conducting observations in astronomy that are not possible from the ground. The astronomical payload may include a telescope, a detector, and a pointing/stabilization system. Determining the
We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bol
An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-t
The E and B Experiment (EBEX) was a long-duration balloon-borne instrument designed to measure the polarization of the cosmic microwave background (CMB) radiation. EBEX was the first balloon-borne instrument to implement a kilo-pixel array of transit
We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwa