ﻻ يوجد ملخص باللغة العربية
The sufficient statistics of the one-point probability density function of the dark matter density field is worked out using cosmological perturbation theory and tested to the Millennium simulation density field. The logarithmic transformation is recovered for spectral index close to $-1$ as a special case of the family of power transformations. We then discuss how these transforms should be modified in the case of noisy tracers of the field and focus on the case of Poisson sampling. This gives us optimal local transformations to apply to galaxy survey data prior the extraction of the spectrum in order to capture most efficiently the information encoded in large scale structures.
Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is da
A heuristic greedy algorithm is developed for efficiently tiling spatially dense redshift surveys. In its first application to the Galaxy and Mass Assembly (GAMA) redshift survey we find it rapidly improves the spatial uniformity of our data, and nat
(Abridged) Estimating the uncertainty on the matter power spectrum internally (i.e. directly from the data) is made challenging by the simple fact that galaxy surveys offer at most a few independent samples. In addition, surveys have non-trivial geom
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc.
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in t