ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent defect states as a source of resistivity anisotropy in the nematic phase of iron pnictides

230   0   0.0 ( 0 )
 نشر من قبل Brian M. Andersen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the role of potential scatterers in the nematic phase of Fe-based superconductors above the transition temperature to the (pi,0) magnetic state but below the orthorhombic structural transition. The anisotropic spin fluctuations in this region can be frozen by disorder, to create elongated magnetic droplets whose anisotropy grows as the magnetic transition is approached. Such states act as strong anisotropic defect potentials which scatter with much higher probability perpendicular to their length than parallel, although the actual crystal symmetry breaking is tiny. We calculate the scattering potentials, relaxation rates, and conductivity in this region, and show that such emergent defect states are essential for the transport anisotropy observed in experiments.



قيم البحث

اقرأ أيضاً

116 - L. Liu , T. Mikami , M. Takahashi 2015
We systematically investigated the anisotropic in-plane resistivity of the iron telluride including three kinds of impurity atoms: excess Fe, Se substituted for Te, and Cu substituted for Fe. Sizable resistivity anisotropy was found in the magneto-st ructurally ordered phase whereas the sign is opposite ($rho_a$ $>$ $rho_b$, where the $b$-axis parameter is shorter than the $a$-axis one) to that observed in the transition-metal doped iron arsenides ($rho_a$ $<$ $rho_b$). On the other hand, our results demonstrate that the magnitude of the resistivity anisotropy in the iron tellurides is correlated with the amount of impurities, implying that the resistivity anisotropy originates from an exotic impurity effect like that in the iron arsenides. This suggests that the anisotropic carrier scattering by impurities is a universal phenomenon in the magneto-structurally ordered phase of the iron-based materials.
FeSe is arguably the simplest, yet the most enigmatic, iron-based superconductor. Its nematic but non-magnetic ground state is unprecedented in this class of materials and stands out as a current puzzle. Here, our NMR measurements in the nematic stat e of mechanically detwinned FeSe reveal that both the Knight shift and the spin-lattice relaxation rate 1/T_1 possess an in-plane anisotropy opposite to that of the iron pnictides LaFeAsO and BaFe2As2. Using a microscopic electron model that includes spin-orbit coupling, our calculations show that an opposite quasiparticle weight ratio between the d_xz and d_yz orbitals leads to an opposite anisotropy of the orbital magnetic susceptibility, which explains our Knight shift results. We attribute this property to a different nature of nematic order in the two compounds, predominantly bond-type in FeSe and onsite ferro-orbital in pnictides. The T_1 anisotropy is found to be inconsistent with existing neutron scattering data in FeSe, showing that the spin fluctuation spectrum reveals surprises at low energy, possibly from fluctuations that do not break C_4 symmetry. Therefore, our results reveal that important information is hidden in these anisotropies and they place stringent constraints on the low-energy spin correlations as well as on the nature of nematicity in FeSe.
The origin of the nematic state is an important puzzle to be solved in iron pnictides. Iron superconductors are multiorbital systems and these orbitals play an important role at low energy. The singular $C_4$ symmetry of $d_{zx}$ and $d_{yz}$ orbital s has a profound influence at the Fermi surface since the $Gamma$ pocket has vortex structure in the orbital space and the X/Y electron pockets have $yz$/$zx$ components respectively. We propose a low energy theory for the spin--nematic model derived from a multiorbital Hamiltonian. In the standard spin--nematic scenario the ellipticity of the electron pockets is a necessary condition for nematicity. In the present model nematicity is essentially due to the singular $C_4$ symmetry of $yz$ and $zx$ orbitals. By analyzing the ($pi, 0$) spin susceptibility in the nematic phase we find spontaneous generation of orbital splitting extending previous calculations in the magnetic phase. We also find that the ($pi, 0$) spin susceptibility has an intrinsic anisotropic momentum dependence due to the non trivial topology of the $Gamma$ pocket.
70 - Jing Wang , Guo-Zhu Liu 2015
We consider the impact of the competition among superconductivity, spin density wave, and nematic order in iron pnictides, and show that the ordering competition substantially reshapes the global phase diagram. We perform a detailed renormalization g roup analysis of an effective field theory of iron pnictides and derive the flow equations of all the physical parameters. Using these results, we find that superconductivity can be strongly suppressed by the ordering competition, and also extract the $T$-dependence of superfluid density. Moreover, the phase transitions may become first order. Interestingly, our RG analysis reveal that the nematic order exists only in an intermediate temperature region $T_{m}< T < T_{n}$, but is destroyed at $T > T_{n}$ by thermal fluctuation and at $T < T_{m}$ by ordering competition. This anomalous existence of nematic order leads to a back-bending of the nematic transition line on the phase diagram, consistent with the observed reentrance of tetragonal structure at low temperatures. A modified phase diagram is obtained based on the RG results.
We report Raman scattering measurement of charge nematic fluctuations in the tetragonal phase of BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x=0.04) single crystals. In both systems, the observed nematic fluctuations are found to exhibit diver gent Curie-Weiss like behavior with very similar characteristic temperature scales, indicating a universal tendency towards charge nematic order in 122 iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا