ﻻ يوجد ملخص باللغة العربية
We revisit the concept of marginal stability in glasses, and determine its range of applicability in the context of avalanche-type response to slow external driving. We argue that there is an intimate connection between a pseudo-gap in the distribution of local fields and crackling in systems with long-range interactions. We show how the principle of marginal stability offers a unifying perspective on the phenomenology of systems as diverse as spin and electron glasses, hard spheres, pinned elastic interfaces and the plasticity of soft amorphous solids.
We investigate the properties of local minima of a recently introduced spin glass model of soft spins subjected to an anharmonic quartic local potential which serves as a model of low temperature molecular or soft glasses. We track the long time grad
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square
We give an overview of numerical and experimental estimates of critical exponents in Spin Glasses. We find that the evidence for a breakdown of universality of exponents in these systems is very strong.
Starting from the second law of thermodynamics applied to an isolated system consisting of the system surrounded by an extremely large medium, we formulate a general non-equilibrium thermodynamic description of the system when it is out of equilibriu
Optimizing a high-dimensional non-convex function is, in general, computationally hard and many problems of this type are hard to solve even approximately. Complexity theory characterizes the optimal approximation ratios achievable in polynomial time