ﻻ يوجد ملخص باللغة العربية
Social learning -by observing and copying others- is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is our ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of lab-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions, and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an unreflective copying bias, which limits their social learning to the output, rather than the process, of their peers reasoning -even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behavior through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.
In-depth studies of sociotechnical systems are largely limited to single instances. Network surveys are expensive, and platforms vary in important ways, from interface design, to social norms, to historical contingencies. With single examples, we can
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the
Peoples personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. circles on Google+, and list
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the
The ability to share social network data at the level of individual connections is beneficial to science: not only for reproducing results, but also for researchers who may wish to use it for purposes not foreseen by the data releaser. Sharing such d