ﻻ يوجد ملخص باللغة العربية
Peoples personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. circles on Google+, and lists on Facebook and Twitter), however they are laborious to construct and must be updated whenever a users network grows. In this paper, we study the novel task of automatically identifying users social circles. We pose this task as a multi-membership node clustering problem on a users ego-network, a network of connections between her friends. We develop a model for detecting circles that combines network structure as well as user profile information. For each circle we learn its members and the circle-specific user profile similarity metric. Modeling node membership to multiple circles allows us to detect overlapping as well as hierarchically nested circles. Experiments show that our model accurately identifies circles on a diverse set of data from Facebook, Google+, and Twitter, for all of which we obtain hand-labeled ground-truth.
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the
In-depth studies of sociotechnical systems are largely limited to single instances. Network surveys are expensive, and platforms vary in important ways, from interface design, to social norms, to historical contingencies. With single examples, we can
Instant quality feedback in the form of online peer ratings is a prominent feature of modern massive online social networks (MOSNs). It allows network members to indicate their appreciation of a post, comment, photograph, etc. Some MOSNs support both
We introduce a new threshold model of social networks, in which the nodes influenced by their neighbours can adopt one out of several alternatives. We characterize social networks for which adoption of a product by the whole network is possible (resp
Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingha