ﻻ يوجد ملخص باللغة العربية
We model conducting pentagon chains with a multi orbital Hubbard model and prove that well below half filling exact ferromagnetic ground states appear. The rigorous method we use is based on the transformation of original hamiltonian into positive semidefinite form. This technique is independent of the spatial dimesion and does not require integrability of the model. The obtained ferromagnetism is connected to dispersionless bands but in a much broader sense than flat band ferromagnetism requires, where on every site a Hubbard term is present. In our case only a small percentage of, even randomly distributed, sites are only interacting.
We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite
We use the matrix product approach to construct all optimum ground states of general anisotropic spin-2 chains with nearest neighbour interactions and common symmetries. These states are exact ground states of the model and their properties depend on
We investigate the ground state magnetization plateaus appearing in spin 1/2 polymerized Heisenberg chains under external magnetic fields. The associated fractional quantization scenario and the exponents which characterize the opening of gapful exci
Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact 4-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure ident
We consider a pentagon chain described by a Hubbard type of model considered under periodic boundary conditions. The system i) is placed in an external magnetic field perpendicular to the plane of the cells, and ii) is in a site selective manner unde