ترغب بنشر مسار تعليمي؟ اضغط هنا

Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects

64   0   0.0 ( 0 )
 نشر من قبل Vitor Cardoso
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that fluctuations in the background of these objects are extremely long-lived and might turn unstable at the nonlinear level, if the object is not endowed with a horizon. If correct, this result has important consequences: objects with a light ring are black holes. In other words, the nonlinear instability of ultracompact stars would provide a strong argument in favor of the black hole hypothesis, once electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We show that the existence of very long-lived modes -- localized near a second, stable null geodesic -- is a generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that the long-lived modes become unstable under fragmentation via a Dyson-Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead to the formation of small black holes close to the stable light ring. Our results suggest that the mere observation of a light ring is a strong evidence for the existence of black holes.


قيم البحث

اقرأ أيضاً

It has been argued that ultracompact objects, which possess light rings but no horizons, may be unstable against gravitational perturbations. To test this conjecture, we revisit the quasi-black hole solutions, a family of horizonless spacetimes whose limit is the extremal Reissner-Nordstrom black hole. We find a critical parameter at which the light rings just appear. We then calculate the quasinormal modes of the quasi-black holes. Both the WKB result and the numerical result show that long-live modes survive for the range where light rings exist, indicating that horizonless spacetimes with light rings are unstable. Our work provides a strong and explicit example that light rings could be direct observational evidence for black holes.
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (li ght ring) of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of specific models than on an actual constraining relationship. We also show, in particular, that a better understanding of the dissociation of the two may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
For a stationary, axisymmetric, asymptotically flat, ultra-compact [$i.e.$ containing light-rings (LRs)] object, with a $mathbb{Z}_2$ north-south symmetry fixing an equatorial plane, we establish that the structure of timelike circular orbits (TCOs) in the vicinity of the equatorial LRs, for either rotation direction, depends exclusively on the stability of the LRs. Thus, an unstable LR delimits a region of unstable TCOs (no TCOs) radially above (below) it; a stable LR delimits a region of stable TCOs (no TCOs) radially below (above) it. Corollaries are discussed for both horizonless ultra-compact objects and black holes. We illustrate these results with a variety of exotic stars examples and non-Kerr black holes, for which we also compute the efficiency associated with converting gravitational energy into radiation by a material particle falling under an adiabatic sequence of TCOs. For most objects studied, it is possible to obtain efficiencies larger than the maximal efficiency of Kerr black holes, $i.e.$ larger than $42%$.
88 - Tim Johannsen 2013
In general relativity, all black holes in vacuum are described by the Kerr metric, which has only two independent parameters: the mass and the spin. The unique dependence on these two parameters is known as the no-hair theorem. This theorem may be te sted observationally by using electromagnetic or gravitational-wave observations to map the spacetime around a candidate black hole and measure potential deviations from the Kerr metric. Several parametric frameworks have been constructed for tests of the no-hair theorem. Due to the uniqueness of the Kerr metric, any such parametric framework must violate at least one of the assumptions of the no-hair theorem. This can lead to pathologies in the spacetime, such as closed timelike curves or singularities, which may hamper using the metric in the strong-field regime. In this paper, I analyze in detail several parametric frameworks and show explicitly the manner in which they differ from the Kerr metric. I calculate the coordinate locations of event horizons in these metrics, if any exist, using methods adapted from the numerical relativity literature. I identify the regions where each parametric deviation is unphysical as well as the range of coordinates and parameters for which each spacetime remains a regular extension of the Kerr metric and is, therefore, suitable for observational tests of the no-hair theorem.
The defining feature of a classical black hole is being a perfect absorber. Any evidence showing otherwise would indicate a departure from the standard black-hole picture. Energy and angular momentum absorption by the horizon of a black hole is respo nsible for tidal heating in a binary. This effect is particularly important in the latest stages of an extreme mass ratio inspiral around a spinning supermassive object, one of the main targets of the future LISA mission. We study how this effect can be used to probe the nature of supermassive objects in a model independent way. We compute the orbital dephasing and the gravitational-wave signal emitted by a point particle in circular, equatorial motion around a spinning supermassive object to the leading order in the mass ratio. Absence of absorption by the central object can affect the gravitational-wave signal dramatically, especially at high spin. This effect will make it possible to put an unparalleled upper bound on the reflectivity of exotic compact objects, at the level of ${cal O}(0.01)%$. This stringent bound would exclude the possibility of observing echoes in the ringdown of a supermassive binary merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا