ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic Study of Event Horizons and Pathologies of Parametrically Deformed Kerr Spacetimes

69   0   0.0 ( 0 )
 نشر من قبل Tim Johannsen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tim Johannsen




اسأل ChatGPT حول البحث

In general relativity, all black holes in vacuum are described by the Kerr metric, which has only two independent parameters: the mass and the spin. The unique dependence on these two parameters is known as the no-hair theorem. This theorem may be tested observationally by using electromagnetic or gravitational-wave observations to map the spacetime around a candidate black hole and measure potential deviations from the Kerr metric. Several parametric frameworks have been constructed for tests of the no-hair theorem. Due to the uniqueness of the Kerr metric, any such parametric framework must violate at least one of the assumptions of the no-hair theorem. This can lead to pathologies in the spacetime, such as closed timelike curves or singularities, which may hamper using the metric in the strong-field regime. In this paper, I analyze in detail several parametric frameworks and show explicitly the manner in which they differ from the Kerr metric. I calculate the coordinate locations of event horizons in these metrics, if any exist, using methods adapted from the numerical relativity literature. I identify the regions where each parametric deviation is unphysical as well as the range of coordinates and parameters for which each spacetime remains a regular extension of the Kerr metric and is, therefore, suitable for observational tests of the no-hair theorem.

قيم البحث

اقرأ أيضاً

Ongoing observations in the strong-field regime are in optimal agreement with general relativity, although current errors still leave room for small deviations from Einsteins theory. Here we summarise our recent results on superradiance of scalar and electromagnetic test fields in Kerr-like spacetimes, focusing mainly on the Konoplya--Zhidenko metric. We observe that, while for large deformations with respect to the Kerr case superradiance is suppressed, it can be nonetheless enhanced for small deformations. We also study the superradiant instability caused by massive scalar fields, and we provide a first estimate of the effect of the deformation on the instability timescale.
124 - Zack Carson , Kent Yagi 2020
Gravitational waves from the explosive merger of distant black holes are encoded with details regarding the complex extreme-gravity spacetime present at their source. Famously described by the Kerr spacetime metric for rotating black holes in general relativity, what if effects beyond this theory are present? One way to efficiently test this hypothesis is to first obtain a metric which parametrically deviates from the Kerr metric in a model-independent way. Given such a metric, one can then predict the ensuing corrections to both the inspiral and ringdown portions of the gravitational waveform for black holes present in the new spacetime. With these tools in hand, one can then test gravitational wave signals for such effects by two different methods, (i) inspiral-merger-ringdown consistency test, and (ii) parameterized test. In this paper, we demonstrate the exact recipe one needs to do just this. We first derive parameterized corrections to the waveform inspiral, ringdown, and remnant properties for a generic non-Kerr spacetime and apply this to two example beyond-Kerr spacetimes each parameterized by a single non-Kerr parameter. We then predict the beyond-Kerr parameter magnitudes required in an observed gravitational wave signal to be statistically inconsistent with the Kerr case in general relativity. We find that the two methods give very similar bounds. The constraints found with existing gravitational-wave events are comparable to those from x-ray observations, while future gravitational-wave observations using Cosmic Explorer (Laser Interferometer Space Antenna) can improve such bounds by two (three) orders of magnitude.
Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that fluctuations in the background of these objects are extremely long-lived and might turn unstable at the nonlinear level, if the object is not endowed with a horizon. If correct, this result has important consequences: objects with a light ring are black holes. In other words, the nonlinear instability of ultracompact stars would provide a strong argument in favor of the black hole hypothesis, once electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We show that the existence of very long-lived modes -- localized near a second, stable null geodesic -- is a generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that the long-lived modes become unstable under fragmentation via a Dyson-Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead to the formation of small black holes close to the stable light ring. Our results suggest that the mere observation of a light ring is a strong evidence for the existence of black holes.
In this paper we argue that the well-known maximal extensions of the Kerr and Kerr-Newman spacetimes characterized by a specific gluing (on disks) of two asymptotically flat regions with ADM masses of opposite signs are physically inconsistent and ac tually non-analytic. We also discover a correct geometrical interpretation of the surface $r=0$, $t={rm const}$ - a dicone in the case of the Kerr solution and a more sophisticated surface of non-zero Gaussian curvature in the case of the Kerr-Newman solution - which suggests that the problem of constructing the maximal analytic extensions for these stationary spacetimes is likely to be performed within the models with only one asymptotically flat region, in which case a smooth crossing of the ring singularity becomes possible, for instance, after carrying out an appropriate transformation of the radial coordinate.
General Relativity predicts the existence of black-holes. Access to the complete space-time manifold is required to describe the black-hole. This feature necessitates that black-hole dynamics is specified by future or teleological boundary condition. Here we demonstrate that the statistical mechanical description of black-holes, the raison detre behind the existence of black-hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm --- Einsteins equations when projected on space-time horizons resemble Navier-Stokes equation of a fluid --- we show that the specific heat and the coefficient of bulk viscosity of the horizon-fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black-hole evaporation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا