ﻻ يوجد ملخص باللغة العربية
Two magnetic ordering transitions are found in InMnO3, the paramagnetic to antiferromagnetic transition near ~118 K and a lower possible spin rotation transition near ~42 K. Multiple length scale structural measurements reveal enhanced local distortion found to be connected with tilting of the MnO5 polyhedra as temperature is reduced. Strong coupling is observed between the lattice and the spin manifested as changes in the structure near both of the magnetic ordering temperatures (at ~42 K and ~ 118 K). External parameters such as pressure are expected to modify the coupling.
We investigate the structural and magnetic phase transitions in EuTi1-xNbxO3 with synchrotron powder X-ray diffraction (XRD), resonant ultrasound spectroscopy (RUS), and magnetization measurements. Upon Nb-doping, the Pm-3m to I4/mcm structural trans
To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (TN). Using the sym
Single crystal synthesis, structure, electric polarization and heat capacity measurements on hexagonal InMnO3 show that this small R ion in the RMnO3 series is ferroelectric (space group P63cm). Structural analysis of this system reveals a high degre
Neutron diffraction studies as a function of temperature on solid solutions of MnSe and MnTe in the Se rich region are presented. Interestingly as Te is doped in MnSe, the structural transformation to NiAs phase diminishes, both in terms of % fractio
Gen Shirane began studying ferroelectrics while he was still based in Japan in the early 1950s. It was therefore natural that when he arrived at Brookhaven and began specialising in neutron scattering that he would devote much of his energy and exper