ﻻ يوجد ملخص باللغة العربية
Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 micrometer. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ~2%.
Since April 2011, realtime fringe tracking data are recorded simultaneously with data from the VLTI/AMBER interferometric beam combiner. Not only this offers possibilities to post-process AMBER reduced data to obtain more accurate interferometric qua
We investigated with MIDI the extension of dusty mid-infrared excess sources (IRS 1W, IRS 10W, IRS 2, IRS 8) in immediate vicinity to the black hole (BH) at the GC. We derive 3$sigma$ upper limits of the correlated fluxes of our target sources which
In order to put MIDI/VLTI observations of AGNs on a significant statistical basis, the number of objects had to be increased dramatically from the few prominent bright cases to over 20. For this, correlated fluxes as faint as ~ 150 mJy need to be obs
The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility for the Very Large Telescope interferometer (VLTI). It has been installed at the Paranal observatory in Augu
The implementation of fringe tracking for optical interferometers is inevitable when optimal exploitation of the instrumental capacities is desired. Fringe tracking allows continuous fringe observation, considerably increasing the sensitivity of the