ﻻ يوجد ملخص باللغة العربية
We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data from the Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES and PS1 provide multi-band photometry in optical/near-infrared wavelengths over ~80% of the sky. Our search for satellite galaxies targets ~25,000 deg$^2$ of the high-Galactic-latitude sky reaching a 10$sigma$ point-source depth of $gtrsim$ 22.5 mag in the $g$ and $r$ bands. While satellite galaxy searches have been performed independently on DES and PS1 before, this is the first time that a self-consistent search is performed across both data sets. We do not detect any new high-significance satellite galaxy candidates, while recovering the majority of satellites previously detected in surveys of comparable depth. We characterize the sensitivity of our search using a large set of simulated satellites injected into the survey data. We use these simulations to derive both analytic and machine-learning models that accurately predict the detectability of Milky Way satellites as a function of their distance, size, luminosity, and location on the sky. To demonstrate the utility of this observational selection function, we calculate the luminosity function of Milky Way satellite galaxies, assuming that the known population of satellite galaxies is representative of the underlying distribution. We provide access to our observational selection function to facilitate comparisons with cosmological models of galaxy formation and evolution.
We combine a series of high-resolution simulations with semi-analytic galaxy formation models to follow the evolution of a system resembling the Milky Way and its satellites. The semi-analytic model is based on that developed for the Millennium Simul
Recent studies suggest that only three of the twelve brightest satellites of the Milky Way (MW) inhabit dark matter halos with maximum circular velocity, V_max, exceeding 30km/s. This is in apparent contradiction with the LCDM simulations of the Aqua
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and mar
We present MWFitting, a method to fit the stellar components of the Galaxy by comparing Hess Diagrams (HDs) from TRILEGAL models to real data. We apply MWFitting to photometric data from the first three years of the Dark Energy Survey (DES). After re
White dwarf stars are a well-established tool for studying Galactic stellar populations. Two white dwarfs in a tight binary system offer us an additional messenger - gravitational waves - for exploring the Milky Way and its immediate surroundings. Gr