ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum population transfer in a periodically driven two-level system

107   0   0.0 ( 0 )
 نشر من قبل Pablo Poggi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of a two-level quantum system under the influence of sinusoidal driving in the intermediate frequency regime. Analyzing the Floquet quasienergy spectrum, we find combinations of the field parameters for which population transfer is optimal and takes place through a series of well defined steps of fixed duration. We also show how the corresponding evolution operator can be approximated at all times by a very simple analytical expression. We propose this model as being specially suitable for treating periodic driving at avoided crossings found in complex multi-level systems, and thus show a relevant application of our results to designing a control protocol in a realistic molecular model



قيم البحث

اقرأ أيضاً

90 - D. X. Li , X. Q. Shao 2018
We propose a simple exact analytical solution for a model consisting of a two-level system and a polychromatically driving field. It helps us to realize a rapid complete population transfer from the ground state to the excited state, and the system c an be stable at the excited state for an extremely long time. A combination of the mechanism and the Rydberg atoms successfully prepares the Bell state and multipartite $W$ state, and the experimental feasibility is discussed via the current experimental parameters. Finally, the simple exact analytical solution is generalized into a three-level system, which leads to a significant enhancement of the robustness against dissipation.
In this paper we propose a new protocol to achieve coherent population transfer between two states in a three-level atom by using two ac fields. It is based on the physics of Stimulated Raman Adiabatic Passage (STIRAP), but it is implemented with the constraint of a reduced control, namely one of the fields cannot be switched off. A combination of frequency chirps is used with resonant fields, allowing to achieve approximate destructive interference, despite of the fact that an exact dark state does not exist. This new chirped STIRAP protocol is tailored for applications to artificial atoms, where architectures with several elementary units can be strongly coupled but where the possibility of switching on and off such couplings is often very limited. Demonstration of this protocol would be a benchmark for the implementation of a class of multilevel advanced control procedures for quantum computation and microwave quantum photonics in artificial atoms.
A realisation of a periodically driven microwave system is presented. The principal element of the scheme is a variable capacity, i.e. a varicap, introduced as an element of the resonant circuit. Sideband structures corresponding to different driving signals, have been measured experimentally. In the linear regime we observed sideband structures with specific shapes. The main peculiarities of these shapes can be explained within a semiclassical approximation. A good agreement between experimental data and theoretical expectations has been found.
341 - T. Boulier , J. Maslek , M. Bukov 2018
We experimentally investigate the effects of parametric instabilities on the short-time heating process of periodically-driven bosons in 2D optical lattices with a continuous transverse (tube) degree of freedom. We analyze three types of periodic dri ves: (i) linear along the x-lattice direction only, (ii) linear along the lattice diagonal, and (iii) circular in the lattice plane. In all cases, we demonstrate that the BEC decay is dominated by the emergence of unstable Bogoliubov modes, rather than scattering in higher Floquet bands, in agreement with recent theoretical predictions. The observed BEC depletion rates are much higher when shaking both along x and y directions, as opposed to only x or only y. This is understood as originating from the interaction-induced non-separability along the two lattice directions. We also report an explosion of the heating rates at large drive amplitudes, and suggest a phenomenological description beyond Bogoliubov theory. In this strongly-coupled regime, circular drives heat faster than diagonal drives, which illustrates the non-trivial dependence of the heating on the choice of drive.
We derive a master equation for a driven double-dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double dot system. This phenomenon is consistent with recent experimental observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا