ﻻ يوجد ملخص باللغة العربية
A realisation of a periodically driven microwave system is presented. The principal element of the scheme is a variable capacity, i.e. a varicap, introduced as an element of the resonant circuit. Sideband structures corresponding to different driving signals, have been measured experimentally. In the linear regime we observed sideband structures with specific shapes. The main peculiarities of these shapes can be explained within a semiclassical approximation. A good agreement between experimental data and theoretical expectations has been found.
We present an experimental and numerical study of missing-level statistics of chaotic three-dimensional microwave cavities. The nearest-neighbor spacing distribution, the spectral rigidity, and the power spectrum of level fluctuations were investigat
We study the dynamics of a two-level quantum system under the influence of sinusoidal driving in the intermediate frequency regime. Analyzing the Floquet quasienergy spectrum, we find combinations of the field parameters for which population transfer
We report on the experimental investigation of the dependence of the elastic enhancement, i.e., enhancement of scattering in backward direction over scattering in other directions of a wave-chaotic system with partially violated time-reversal (T ) in
Three dimensional Weyl semimetals exhibit open Fermi arcs on their sample surfaces connecting the projection of bulk Weyl points of opposite chirality. The canonical interpretation of these surfaces states is in terms of chiral edge modes of a layer
Time-periodic (Floquet) topological phases of matter exhibit bulk-edge relationships that are more complex than static topological insulators and superconductors. Finding the edge modes unique to driven systems usually requires numerics. Here we pres