ترغب بنشر مسار تعليمي؟ اضغط هنا

Space Saving by Dynamic Algebraization

97   0   0.0 ( 0 )
 نشر من قبل Huiwen Yu
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamic programming is widely used for exact computations based on tree decompositions of graphs. However, the space complexity is usually exponential in the treewidth. We study the problem of designing efficient dynamic programming algorithm based on tree decompositions in polynomial space. We show how to construct a tree decomposition and extend the algebraic techniques of Lokshtanov and Nederlof such that the dynamic programming algorithm runs in time $O^*(2^h)$, where $h$ is the maximum number of vertices in the union of bags on the root to leaf paths on a given tree decomposition, which is a parameter closely related to the tree-depth of a graph. We apply our algorithm to the problem of counting perfect matchings on grids and show that it outperforms other polynomial-space solutions. We also apply the algorithm to other set covering and partitioning problems.

قيم البحث

اقرأ أيضاً

Given a directed weighted graph $G=(V,E)$ undergoing vertex insertions emph{and} deletions, the All-Pairs Shortest Paths (APSP) problem asks to maintain a data structure that processes updates efficiently and returns after each update the distance ma trix to the current version of $G$. In two breakthrough results, Italiano and Demetrescu [STOC 03] presented an algorithm that requires $tilde{O}(n^2)$ emph{amortized} update time, and Thorup showed in [STOC 05] that emph{worst-case} update time $tilde{O}(n^{2+3/4})$ can be achieved. In this article, we make substantial progress on the problem. We present the following new results: (1) We present the first deterministic data structure that breaks the $tilde{O}(n^{2+3/4})$ worst-case update time bound by Thorup which has been standing for almost 15 years. We improve the worst-case update time to $tilde{O}(n^{2+5/7}) = tilde{O}(n^{2.71..})$ and to $tilde{O}(n^{2+3/5}) = tilde{O}(n^{2.6})$ for unweighted graphs. (2) We present a simple deterministic algorithm with $tilde{O}(n^{2+3/4})$ worst-case update time ($tilde{O}(n^{2+2/3})$ for unweighted graphs), and a simple Las-Vegas algorithm with worst-case update time $tilde{O}(n^{2+2/3})$ ($tilde{O}(n^{2 + 1/2})$ for unweighted graphs) that works against a non-oblivious adversary. Both data structures require space $tilde{O}(n^2)$. These are the first exact dynamic algorithms with truly-subcubic update time emph{and} space usage. This makes significant progress on an open question posed in multiple articles [COCOON01, STOC 03, ICALP04, Encyclopedia of Algorithms 08] and is critical to algorithms in practice [TALG 06] where large space usage is prohibitive. Moreover, they match the worst-case update time of the best previous algorithms and the second algorithm improves upon a Monte-Carlo algorithm in a weaker adversary model with the same running time [SODA 17].
In this paper we study the fundamental problem of maintaining a dynamic collection of strings under the following operations: concat - concatenates two strings, split - splits a string into two at a given position, compare - finds the lexicographical order (less, equal, greater) between two strings, LCP - calculates the longest common prefix of two strings. We present an efficient data structure for this problem, where an update requires only $O(log n)$ worst-case time with high probability, with $n$ being the total length of all strings in the collection, and a query takes constant worst-case time. On the lower bound side, we prove that even if the only possible query is checking equality of two strings, either updates or queries take amortized $Omega(log n)$ time; hence our implementation is optimal. Such operations can be used as a basic building block to solve other string problems. We provide two examples. First, we can augment our data structure to provide pattern matching queries that may locate occurrences of a specified pattern $p$ in the strings in our collection in optimal $O(|p|)$ time, at the expense of increasing update time to $O(log^2 n)$. Second, we show how to maintain a history of an edited text, processing updates in $O(log t log log t)$ time, where $t$ is the number of edits, and how to support pattern matching queries against the whole history in $O(|p| log t log log t)$ time. Finally, we note that our data structure can be applied to test dynamic tree isomorphism and to compare strings generated by dynamic straight-line grammars.
In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-of fs between the number of recolorings and the number of colors used. For any $d>0$, the first algorithm maintains a proper $O(mathcal{C} d N^{1/d})$-coloring while recoloring at most $O(d)$ vertices per update, where $mathcal{C}$ and $N$ are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an $O(mathcal{C} d)$-coloring with $O(d N^{1/d})$ recolorings per update. The two converge when $d = log N$, maintaining an $O(mathcal{C} log N)$-coloring with $O(log N)$ recolorings per update. We also present a lower bound, showing that any algorithm that maintains a $c$-coloring of a $2$-colorable graph on $N$ vertices must recolor at least $Omega(N^frac{2}{c(c-1)})$ vertices per update, for any constant $c geq 2$.
This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between $n$ nodes, with patterns that may change over time, the objective is to service these requests efficiently by partitioning the nodes into $ell$ clusters, each of size $k$, such that frequently communicating nodes are located in the same cluster. The partitioning can be updated dynamically by migrating nodes between clusters. The goal is to devise online algorithms which jointly minimize the amount of inter-cluster communication and migration cost. The problem features interesting connections to other well-known online problems. For example, scenarios with $ell=2$ generalize online paging, and scenarios with $k=2$ constitute a novel online variant of maximum matching. We present several lower bounds and algorithms for settings both with and without cluster-size augmentation. In particular, we prove that any deterministic online algorithm has a competitive ratio of at least $k$, even with significant augmentation. Our main algorithmic contributions are an $O(k log{k})$-competitive deterministic algorithm for the general setting with constant augmentation, and a constant competitive algorithm for the maximum matching variant.
We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned $d$-dimensional hypercubes. It is known that a maximum independent set of a collection of $n$ intervals can be found in $O(nlog n)$ time, while it is already textsf{NP}-hard for a set of unit squares. Moreover, the problem is inapproximable on many important graph families, but admits a textsf{PTAS} for a set of arbitrary pseudo-disks. Therefore, a fundamental question in computational geometry is whether it is possible to maintain an approximate maximum independent set in a set of dynamic geometric objects, in truly sublinear time per insertion or deletion. In this work, we answer this question in the affirmative for intervals, squares and hypercubes. First, we show that for intervals a $(1+varepsilon)$-approximate maximum independent set can be maintained with logarithmic worst-case update time. This is achieved by maintaining a locally optimal solution using a constant number of constant-size exchanges per update. We then show how our interval structure can be used to design a data structure for maintaining an expected constant factor approximate maximum independent set of axis-aligned squares in the plane, with polylogarithmic amortized update time. Our approach generalizes to $d$-dimensional hypercubes, providing a $O(4^d)$-approximation with polylogarithmic update time. Those are the first approximation algorithms for any set of dynamic arbitrary size geometric objects; previous results required bounded size ratios to obtain polylogarithmic update time. Furthermore, it is known that our results for squares (and hypercubes) cannot be improved to a $(1+varepsilon)$-approximation with the same update time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا