ﻻ يوجد ملخص باللغة العربية
We study the transport of Brownian particles under a constant driving force and moving in channels that present a varying centerline but have constant aperture width. We investigate two types of channels, {it solid} channels in which the particles are geometrically confined between walls and {em soft} channels in which the particles are confined by a periodic potential. We consider the limit of narrow, slowly-varying channels, i.e., when the aperture and the variation in the position of the centerline are small compared to the length of a unit cell in the channel (wavelength). We use the method of asymptotic expansions to determine both the average velocity (or mobility) and the effective diffusion coefficient of the particles. We show that both solid and soft-channels have the same effects on the transport properties up to $O(epsilon^2)$. We also show that the mobility in a solid-channel at $O(epsilon^4)$ is smaller than that in a soft-channel. Interestingly, in both cases, the corrections to the mobility of the particles are independent of the Peclet number and, as a result, the Einstein-Smoluchowski relation is satisfied. Finally, we show that by increasing the solid-channel width from $w(x)$ to $sqrt{6/pi}w(x)$, the mobility of the particles in the solid-channel can be matched to that in the soft-channel up to $O(epsilon^4)$.
We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero t
In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied t
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations
We consider the active Brownian particle (ABP) model for a two-dimensional microswimmer with fixed speed, whose direction of swimming changes according to a Brownian process. The probability density for the swimmer evolves according to a Fokker-Planc
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is espe