ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly bound yet light bipolarons for double-well electron-phonon coupling

161   0   0.0 ( 0 )
 نشر من قبل Clemens P J Adolphs
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Momentum Average approximation (MA) to study the ground-state properties of strongly bound bipolarons in the double-well electron-phonon (el-ph) coupling model, which describes certain intercalated lattices where the linear term in the el-ph coupling vanishes due tosymmetry. We show that this model predicts the existence of strongly bound yet lightweight bipolarons in some regions of the parameter space. This provides a novel mechanism for the appearance of such bipolarons, in addition to long-range el-ph coupling and special lattice geometries.



قيم البحث

اقرأ أيضاً

We show that in crystals where light ions are symmetrically intercalated between heavy ions, the electron-phonon coupling for carriers located at the light sites cannot be described by a Holstein model. We introduce the double-well electron-phonon co upling model to describe the most interesting parameter regime in such systems, and study it in the single carrier limit using the momentum average approximation. For sufficiently strong coupling, a small polaron with a robust phonon cloud appears at low energies. While some of its properties are similar to those of a Holstein polaron, we highlight some crucial differences. These prove that the physics of the double-well electron-phonon coupling model cannot be reproduced with a linear Holstein model.
It is widely accepted that phonon-mediated high-temperature superconductivity is impossible at ambient pressure, because of the very large effective masses of polarons/bipolarons at strong electron-phonon coupling. Here we challenge this belief by sh owing that strongly bound yet very light bipolarons appear for strong Peierls/Su-Schrieffer-Heeger interaction. These bipolarons also exhibit many other unconventional properties, e.g. at strong coupling there are two low-energy bipolaron bands that are stable against strong on-site Hubbard repulsion. Using numerical simulations and analytical arguments, we show that these properties result from the specific form of the phonon-mediated interaction, which is of pair-hopping instead of regular density-density type. This unusual effective interaction is bound to have non-trivial consequences for the superconducting state expected to arise at finite carrier concentrations, and should favor a large critical temperature.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
100 - Xun Cai , Zi-Xiang Li , Hong Yao 2021
Antiferromagnetism (AF) such as Neel ordering is often closely related to Coulomb interactions such as Hubbard repulsion in two-dimensional (2D) systems. Whether Neel AF ordering in 2D can be dominantly induced by electron-phonon couplings (EPC) has not been completely understood. Here, by employing numerically-exact sign-problem-free quantum Monte Carlo (QMC) simulations, we show that optical Su-Schrieffer-Heeger (SSH) phonons with frequency $omega$ and EPC constant $lambda$ can induce AF ordering for a wide range of phonon frequency $omega>omega_c$. For $omega<omega_c$, a valence-bond-solid (VBS) order appears and there is a direct quantum phase transition between VBS and AF phases at $omega_c$. The phonon mechanism of the AF ordering is related to the fact that SSH phonons directly couple to electron hopping whose second-order process can induce an effective AF spin exchange. Our results shall shed new lights to understanding AF ordering in correlated quantum materials.
We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ after resonant excitation of a high-frequency infrared-active lat tice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا