ﻻ يوجد ملخص باللغة العربية
Carbon monoxide molecules in their electronic, vibrational, and rotational ground state are highly attractive for trapping experiments. The optical or ac electric traps that can be envisioned for these molecules will be very shallow, however, with depths in the sub-milliKelvin range. Here we outline that the required samples of translationally cold CO (X$^1Sigma^+$, $v$=0, $N$=0) molecules can be produced after Stark deceleration of a beam of laser-prepared metastable CO (a$^3Pi_1$) molecules followed by optical transfer of the metastable species to the ground state emph{via} perturbed levels in the A$^1Pi$ state. The optical transfer scheme is experimentally demonstrated and the radiative lifetimes and the electric dipole moments of the intermediate levels are determined.
We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled
We here report on the realization of an electrodynamic trap, capable of trapping neutral atoms and molecules in both low-field and high-field seeking states. Confinement in three dimensions is achieved by switching between two electric field configur
We report on the direct conversion of laser-cooled 41K and 87Rb atoms into ultracold 41K87Rb molecules in the rovibrational ground state via photoassociation followed by stimulated Raman adiabatic passage. High-resolution spectroscopy based on the co
We demonstrate the direct formation of vibronic ground state RbCs molecules by photoassociation of ultracold atoms followed by radiative stabilization. The photoassociation proceeds through deeply-bound levels of the (2)^{3}Pi_{0^{+}} state. From ana
We report the creation of a sample of over 1000 ultracold $^{87}$RbCs molecules in the lowest rovibrational ground state, from an atomic mixture of $^{87}$Rb and Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated R