ترغب بنشر مسار تعليمي؟ اضغط هنا

From thermal equilibrium to nonequilibrium quench dynamics: A conserving approximation for the interacting resonant level

49   0   0.0 ( 0 )
 نشر من قبل Yuval Vinkler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a low-order conserving approximation for the interacting resonant-level model (IRLM), and apply it to (i) thermal equilibrium, (ii) nonequilibrium steady state, and (iii) nonequilibrium quench dynamics. Thermal equilibrium is first used to carefully gauge the quality of the approximation by comparing the results with other well-studied methods, and finding good agreement for small values of the interaction. We analytically show that the power-law exponent of the renormalized level width usually derived using renormalization group approaches can also be correctly obtained in our approach in the weak interaction limit. A closed expression for the nonequilibrium steady-state current is derived and analytically and numerically evaluated. We find a negative differential conductance at large voltages, and the exponent of the power-law suppression of the steady-state current is calculated analytically at zero-temperature. The response of the system to quenches is investigated for a single-lead as well as for two-lead setup at finite voltage bias at particle-hole symmetry using a self-consistent two-times Keldysh Green function approach, and results are presented for the time-dependent current for different bias and contact interaction strength.

قيم البحث

اقرأ أيضاً

In the previous paper, we found a series expression for the average electric current following a quench in the nonequilibrium Kondo model driven by a bias voltage. Here, we evaluate the steady state current in the regimes of strong and weak coupling. We obtain the standard leading order results in the usual weak antiferromagnetic regime, and we also find a new universal regime of strong ferromagnetic coupling with Kondo temperature $T_K = D e^{frac{3pi^2}{8} rho J}$. In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
94 - G. Zhang , C.-H. Chung , C. T. Ke 2016
Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich interplay between external driving and the many-body correlations. Of particular interest is the nonequilibrium behavior near a quantum crit ical point (QCP), where the system is delicately balanced between different ground states. We present both an analytical calculation of the nonequilibrium steady-state current in a critical system and experimental results to which the theory is compared. The system is a quantum dot coupled to resistive leads: a spinless resonant level interacting with an ohmic dissipative environment. A two channel Kondo-like QCP occurs when the level is on resonance and symmetrically coupled to the leads, conditions achieved by fine-tuning using electrostatic gates. We calculate and measure the nonlinear current as a function of bias ($I$-$V$ curve) at the critical values of the gate voltages corresponding to the QCP. The quantitative agreement between the experimental data and the theory, with no fitting parameter, is excellent. As our system is fully accessible to both theory and experiment, it provides an ideal setting for addressing nonequilibrium phenomena in correlated quantum matter.
We calculate the nonlinear cotunneling conductance through a quantum dot with 3 electrons occupying the three highest lying energy levels. Starting from a 3-orbital Anderson model, we apply a generalized Schrieffer-Wolff transformation to derive an e ffective Kondo model for the system. Within this model we calculate the nonequilibrium occupation numbers and the corresponding cotunneling current to leading order in the exchange couplings. We identify the inelastic cotunneling thresholds and their splittings with applied magnetic field, and make a qualitative comparison to recent experimental data on carbon nanotube and InAs quantum-wire quantum dots. Further predictions of the model like cascade resonances and a magnetic-field dependence of the orbital level splitting are not yet observed but within reach of recent experimental work on carbon nanotube and InAs nanowire quantum dots.
The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium transport near a quantum phase transition in a spinless dissi pative resonant-level model, extending earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization group approach is applied to compute the non-equilibrium current in the presence of a finite bias voltage V. In the linear response regime V ->0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the non-equilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the non-equilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for V< T, while it obeys a distinct non-equilibrium profile for V>T. We furthermore provide new signatures of the transition in the finite-frequency current noise and AC conductance via the recently developed Functional Renormalization Group (FRG) approach. The generalization of our analysis to non-equilibrium transport through a resonant level coupled to two chiral Luttinger-liquid leads, generated by the fractional quantum Hall edge states, is discussed. Our work on dissipative resonant level has direct relevance to the experiments in a quantum dot coupled to resistive environment, such as H. Mebrahtu et al., Nature 488, 61, (2012).
Using the adaptive time-dependent density matrix renormalization group, we study the time evolution of density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the interaction strength. Over a broad range of model parameters, the correlation function exhibits a characteristic light-cone-like time evolution representative of a ballistic transport of information. Such behavior is observed both when quenching an insulator into the metallic region and also when quenching within the insulating region. However, when a metallic state beyond the quantum critical point is quenched deep into the insulating regime, no indication for ballistic transport is observed. Instead, stable domain walls in the density correlations emerge during the time evolution, consistent with the predictions of the Kibble-Zurek mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا