ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium quantum transport through a dissipative resonant level

184   0   0.0 ( 0 )
 نشر من قبل Chung-Hou Chung
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium transport near a quantum phase transition in a spinless dissipative resonant-level model, extending earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization group approach is applied to compute the non-equilibrium current in the presence of a finite bias voltage V. In the linear response regime V ->0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the non-equilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the non-equilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for V< T, while it obeys a distinct non-equilibrium profile for V>T. We furthermore provide new signatures of the transition in the finite-frequency current noise and AC conductance via the recently developed Functional Renormalization Group (FRG) approach. The generalization of our analysis to non-equilibrium transport through a resonant level coupled to two chiral Luttinger-liquid leads, generated by the fractional quantum Hall edge states, is discussed. Our work on dissipative resonant level has direct relevance to the experiments in a quantum dot coupled to resistive environment, such as H. Mebrahtu et al., Nature 488, 61, (2012).



قيم البحث

اقرأ أيضاً

94 - G. Zhang , C.-H. Chung , C. T. Ke 2016
Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich interplay between external driving and the many-body correlations. Of particular interest is the nonequilibrium behavior near a quantum crit ical point (QCP), where the system is delicately balanced between different ground states. We present both an analytical calculation of the nonequilibrium steady-state current in a critical system and experimental results to which the theory is compared. The system is a quantum dot coupled to resistive leads: a spinless resonant level interacting with an ohmic dissipative environment. A two channel Kondo-like QCP occurs when the level is on resonance and symmetrically coupled to the leads, conditions achieved by fine-tuning using electrostatic gates. We calculate and measure the nonlinear current as a function of bias ($I$-$V$ curve) at the critical values of the gate voltages corresponding to the QCP. The quantitative agreement between the experimental data and the theory, with no fitting parameter, is excellent. As our system is fully accessible to both theory and experiment, it provides an ideal setting for addressing nonequilibrium phenomena in correlated quantum matter.
We investigate experimentally an exotic state of electronic matter obtained by fine-tuning to a quantum critical point (QCP), realized in a spin-polarized resonant level coupled to strongly dissipative electrodes. Several transport scaling laws near and far from equilibrium are measured, and then accounted for theoretically. Our analysis reveals a splitting of the resonant level into two quasi-independent Majorana modes, one strongly hybridized to the leads, and the other tightly bound to the quantum dot. Residual interactions involving these Majorana fermions result in the observation of a striking quasi-linear non-Fermi liquid scattering rate at the QCP. Our devices constitute a viable alternative to topological superconductors as a platform for studying strong correlation effects within Majorana physics.
We provide a simple set of rules for predicting interference effects in off-resonant transport through single-molecule junctions. These effects fall in two classes, showing respectively an odd or an even number of nodes in the linear conductance with in a given molecular charge state, and we demonstrate how to decide the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by tunneling on and off the molecule from same, or different sublattices. More generally, we investigate a range of smaller molecules by means of exact diag- onalization combined with a perturbative treatment of the molecule-lead tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions, interference causes no transmission nodes, but argue that it may lead to a non-standard gate-dependence of the zero-bias Kondo resonance.
We investigate the non-equilibrium transport properties of a disordered molecular nanowire. The nanowire is regarded as a quasi-one-dimensional organic crystal composed of self-assembled molecules. One orbital and a single random energy are assigned to each molecule while the intermolecular coupling does not fluctuate. Consequently, electronic states are expected to be spatially localized. We consider the regime of strong localization, namely, the localization length is smaller than the length of the molecular wire. Electron-vibron interaction, taking place in each single molecule, is also taken into account. We investigate the interplay between disorder and electron-vibron interaction in response to either an applied electric bias or a temperature gradient. To this end, we calculate the electric and heat currents when the nanowire is connected to leads, using the Keldysh non-equilibrium Greens function formalism. At intermediate temperature, scattering by disorder dominates both charge and heat transport. We find that the electron-vibron interaction enhances the effect of the disorder on the transport properties due to the exponential suppression of tunneling.
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongl y. At zero temperature the current voltage relation of the link is $Isim exp(-E_0/eV)$ where $E_0simeta/kappa$ and $kappa$ denotes the compressibility. At non-zero temperature $T$ the linear conductance is proportional to $exp(-sqrt{{cal C}E_0/k_BT})$. The decay of Friedel oscillation saturates for distance larger than $L_{eta}sim 1/eta $ from the impurity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا