ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): detection of ethylene glycol and formamide

130   0   0.0 ( 0 )
 نشر من قبل Jacques Crovisier
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A spectral survey in the 1 mm wavelength range was undertaken in the long-period comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millimetrique (IRAM) in April and November-December 2013. We report the detection of ethylene glycol (CH$_2$OH)$_2$ (aGg conformer) and formamide (NH$_2$CHO) in the two comets. The abundances relative to water of ethylene glycol and formamide are 0.2-0.3% and 0.02% in the two comets, similar to the values measured in comet C/1995 O1 (Hale-Bopp). We also report the detection of HCOOH and CH$_3$CHO in comet C/2013 R1 (Lovejoy), and a search for other complex species (methyl formate, glycolaldehyde).



قيم البحث

اقرأ أيضاً

The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive composit ional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H$_2^{16}$O and H$_2^{18}$O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are $^{16}$O/$^{18}$O = 499 $pm$ 24 and D/H = 1.4 $pm$ 0.4 $times 10^{-4}$ in water, $^{32}$S/$^{34}$S = 24.7 $pm$ 3.5 in CS, all compatible with terrestrial values. The ratio $^{12}$C/$^{13}$C = 109 $pm$ 14 in HCN is marginally higher than terrestrial and $^{14}$N/$^{15}$N = 145 $pm$ 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.
HCN J=1-0 emission from the long-period comet C/2013 R1 (Lovejoy) was observed from the Onsala Space Observatory on multiple occasions during the month before its perihelion passage on December 22, 2013. We report detections for seven different dates , spanning heliocentric distances (R_h) decreasing from 0.94 to 0.82 au. Estimated HCN production rates are generally higher than previously reported for the same time period, but the implied increase in production rate with heliocentric distance, Q_{HCN} proportionate to R_h^{-3.2}, represent well the overall documented increase since it was first observed at R_h=1.35. The implied mean HCN abundance relative to water in R1 Lovejoy is 0.2%. We also report on a detection of HCN with the new 3 mm receiver system at Onsala Space Observatory in comet C/2014 Q2 (Lovejoy) on January 14, 2015, when its heliocentric distance was 1.3 au. Relative to comet C/2013 R1 (Lovejoy), the HCN production rate of C/2014 Q2 (Lovejoy) was more than 5 times higher at similar heliocentric distances, and the implied HCN abundance relative to water 0.09%.
We present molecular observations carried out with the IRAM 30m telescope at wavelengths around 1.15 mm towards the Oort cloud comets C/2012 S1 (ISON) and C/2013 R1 (Lovejoy) when they were at 0.6 and 1 au, respectively, from the Sun. We detect HCN, HNC, and CH3OH in both comets, together with the ion HCO+ in comet ISON and a few weak unidentified lines in comet Lovejoy, one of which might be assigned to methylamine (CH3NH2). The monitoring of the HCN J = 3-2 line showed a tenfold enhancement in comet ISON on November 14.4 UT due to an outburst of activity whose exact origin is unknown, although it might be related to some break-up of the nucleus. The set of CH3OH lines observed was used to derive the kinetic temperature in the coma, 90 K in comet ISON and 60 K in comet Lovejoy. The HNC/HCN ratios derived, 0.18 in ISON and 0.05 in Lovejoy, are similar to those found in most previous comets and are consistent with an enhancement of HNC as the comet approaches the Sun. Phosphine (PH3) was also searched for unsuccessfully in both comets through its fundamental 1-0 transition, and 3 sigma upper limits corresponding to PH3/H2O ratios 4-10 times above the solar P/O elemental ratio were derived.
Results are presented from the first cometary observations using the Atacama Large Millimeter/Submillimeter Array (ALMA), including measurements of the spatially-resolved distributions of HCN, HNC, H$_2$CO and dust within the comae of two comets: C/2 012 F6 (Lemmon) and C/2012 S1 (ISON), observed at heliocentric distances of 1.5 AU and 0.54 AU, respectively. These observations (with angular resolution $approx0.5$), reveal an unprecedented level of detail in the distributions of these fundamental cometary molecules, and demonstrate the power of ALMA for quantitative measurements of the distributions of molecules and dust in the inner comae of typical bright comets. In both comets, HCN is found to originate from (or within a few hundred km of) the nucleus, with a spatial distribution largely consistent with spherically-symmetric, uniform outflow. By contrast, the HNC distributions are clumpy and asymmetrical, with peaks at cometocentric radii $sim$500-1000~km, consistent with release of HNC in collimated outflow(s). Compared to HCN, the H$_2$CO distribution in comet Lemmon is very extended. The interferometric visibility amplitudes are consistent with coma production of H$_2$CO and HNC from unidentified precursor material(s) in both comets. Adopting a Haser model, the H$_2$CO parent scale-length is found to be a few thousand km in Lemmon and only a few hundred km in ISON, consistent with destruction of the precursor by photolysis or thermal degradation at a rate which scales in proportion to the Solar radiation flux.
We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31-November 06 during var iable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17-23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comets emission spectrum from first principles accordingly. Our model agrees with the observational spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4-1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. We lastly discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا