ترغب بنشر مسار تعليمي؟ اضغط هنا

Titans atmosphere as observed by Cassini/VIMS solar occultations: CH$_4$, CO and evidence for C$_2$H$_6$ absorption

385   0   0.0 ( 0 )
 نشر من قبل Luca Maltagliati
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the VIMS solar occultations dataset, which allows us to extract vertically resolved information on the characteristics of Titans atmosphere between 100-700 km with a characteristic vertical resolution of 10 km. After a series of data treatment procedures, 4 occultations out of 10 are retained. This sample covers different seasons and latitudes of Titan. The transmittances show clearly the evolution of the haze and detect the detached layer at 310 km in Sept. 2011 at mid-northern latitudes. Through the inversion of the transmission spectra with a line-by-line radiative transfer code we retrieve the vertical distribution of CH$_4$ and CO mixing ratio. The two methane bands at 1.4 and 1.7 {mu}m are always in good agreement and yield an average stratospheric abundance of $1.28pm0.08$%. This is significantly less than the value of 1.48% obtained by the GCMS/Huygens instrument. The analysis of the residual spectra after the inversion shows that there are additional absorptions which affect a great part of the VIMS wavelength range. We attribute many of these additional bands to gaseous ethane, whose near-infrared spectrum is not well modeled yet. Ethane contributes significantly to the strong absorption between 3.2-3.5 {mu}m that was previously attributed only to C-H stretching bands from aerosols. Ethane bands may affect the surface windows too, especially at 2.7 {mu}m. Other residual bands are generated by stretching modes of C-H, C-C and C-N bonds. In addition to the C-H stretch from aliphatic hydrocarbons at 3.4 {mu}m, we detect a strong and narrow absorption at 3.28 {mu}m which we tentatively attribute to the presence of PAHs in the stratosphere. C-C and C-N stretching bands are possibly present between 4.3-4.5 {mu}m. Finally, we obtain the CO mixing ratio between 70-170 km. The average result of $46pm16$ ppm is in good agreement with previous studies.

قيم البحث

اقرأ أيضاً

The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H$_2$, H$_2$O, CO$_2$, CH$_4$, CO, O$_2$, or N$_2$. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N$_2$, and O$_2$ with minimal effect, H$_2$O, CO$_2$, and CH$_4$ with intermediate influence, and H$_2$ with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi-wavelength astronomical observations.
Titan harbors a dense, organic-rich atmosphere primarily composed of N$_2$ and CH$_4$, with lesser amounts of hydrocarbons and nitrogen-bearing species. As a result of high sensitivity observations by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6 ($sim$230-272 GHz), we obtained the first spectroscopic detection of CH$_3$C$_3$N (methylcyanoacetylene or cyanopropyne) in Titans atmosphere through the observation of seven transitions in the $J = 64rightarrow63$ and $J = 62rightarrow61$ rotational bands. The presence of CH$_3$C$_3$N on Titan was suggested by the Cassini Ion and Neutral Mass Spectrometer detection of its protonated form: C$_4$H$_3$NH$^+$, but the atmospheric abundance of the associated (deprotonated) neutral product is not well constrained due to the lack of appropriate laboratory reaction data. Here, we derive the column density of CH$_3$C$_3$N to be (3.8-5.7)$times10^{12}$ cm$^{-2}$ based on radiative transfer models sensitive to altitudes above 400 km Titans middle atmosphere. When compared with laboratory and photochemical model results, the detection of methylcyanoacetylene provides important constraints for the determination of the associated production pathways (such as those involving CN, CCN, and hydrocarbons), and reaction rate coefficients. These results also further demonstrate the importance of ALMA and (sub)millimeter spectroscopy for future investigations of Titans organic inventory and atmospheric chemistry, as CH$_3$C$_3$N marks the heaviest polar molecule detected spectroscopically in Titans atmosphere to date.
We have searched for the presence of simple P and S-bearing molecules in Titans atmosphere, by looking for the characteristic signatures of phosphine and hydrogen sulfide in infrared spectra obtained by Cassini CIRS. As a result we have placed the fi rst upper limits on the stratospheric abundances, which are 1 ppb (PH3) and 330 ppb (H2S), at the 2-sigma significance level.
87 - N R Pinh~ao 2019
This work presents swarm parameters of electrons (the bulk drift velocity, the bulk longitudinal component of the diffusion tensor, and the effective ionization frequency) in C$_2$H$_n$, with $n =$ 2, 4 and 6, measured in a scanning drift tube appara tus under time-of-flight conditions over a wide range of the reduced electric field, 1 Td $leq,E/N,leq$ 1790 Td (1 Td = $10^{-21}$ Vm$^2$). The effective steady-state Townsend ionization coefficient is also derived from the experimental data. A kinetic simulation of the experimental drift cell allows estimating the uncertainties introduced in the data acquisition procedure and provides a correction factor to each of the measured swarm parameters. These parameters are compared to results of previous experimental studies, as well as to results of various kinetic swarm calculations: solutions of the electron Boltzmann equation under different approximations (multiterm and density gradient expansions) and Monte Carlo simulations. The experimental data are consistent with most of the swarm parameters obtained in earlier studies. In the case of C$_2$H$_2$, the swarm calculations show that the thermally excited vibrational population should not be neglected, in particular, in the fitting of cross sections to swarm results.
Previous investigations have employed more than 100 close observations of Titan by the Cassini orbiter to elucidate connections between the production and distribution of Titans vast, organic-rich chemical inventory and its atmospheric dynamics. Howe ver, as Titan transitions into northern summer, the lack of incoming data from the Cassini orbiter presents a potential barrier to the continued study of seasonal changes in Titans atmosphere. In our previous work (Thelen et al., 2018), we demonstrated that the Atacama Large Millimeter/submillimeter Array (ALMA) is well suited for measurements of Titans atmosphere in the stratosphere and lower mesosphere (~100-500 km) through the use of spatially resolved (beam sizes <1) flux calibration observations of Titan. Here, we derive vertical abundance profiles of four of Titans trace atmospheric species from the same 3 independent spatial regions across Titans disk during the same epoch (2012 to 2015): HCN, HC$_3$N, C$_3$H$_4$, and CH$_3$CN. We find that Titans minor constituents exhibit large latitudinal variations, with enhanced abundances at high latitudes compared to equatorial measurements; this includes CH$_3$CN, which eluded previous detection by Cassini in the stratosphere, and thus spatially resolved abundance measurements were unattainable. Even over the short 3-year period, vertical profiles and integrated emission maps of these molecules allow us to observe temporal changes in Titans atmospheric circulation during northern spring. Our derived abundance profiles are comparable to contemporary measurements from Cassini infrared observations, and we find additional evidence for subsidence of enriched air onto Titans south pole during this time period. Continued observations of Titan with ALMA beyond the summer solstice will enable further study of how Titans atmospheric composition and dynamics respond to seasonal changes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا