ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron swarm parameters in C$_2$H$_2$, C$_2$H$_4$ and C$_2$H$_6$: measurements and kinetic calculations

88   0   0.0 ( 0 )
 نشر من قبل Nuno Pinh\\~ao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N R Pinh~ao




اسأل ChatGPT حول البحث

This work presents swarm parameters of electrons (the bulk drift velocity, the bulk longitudinal component of the diffusion tensor, and the effective ionization frequency) in C$_2$H$_n$, with $n =$ 2, 4 and 6, measured in a scanning drift tube apparatus under time-of-flight conditions over a wide range of the reduced electric field, 1 Td $leq,E/N,leq$ 1790 Td (1 Td = $10^{-21}$ Vm$^2$). The effective steady-state Townsend ionization coefficient is also derived from the experimental data. A kinetic simulation of the experimental drift cell allows estimating the uncertainties introduced in the data acquisition procedure and provides a correction factor to each of the measured swarm parameters. These parameters are compared to results of previous experimental studies, as well as to results of various kinetic swarm calculations: solutions of the electron Boltzmann equation under different approximations (multiterm and density gradient expansions) and Monte Carlo simulations. The experimental data are consistent with most of the swarm parameters obtained in earlier studies. In the case of C$_2$H$_2$, the swarm calculations show that the thermally excited vibrational population should not be neglected, in particular, in the fitting of cross sections to swarm results.



قيم البحث

اقرأ أيضاً

145 - R. Nath , M. Padmanabhan , S. Baby 2014
We report structural and magnetic properties of the spin-$frac12$ quantum antiferromagnet Cu[C$_6$H$_2$(COO)$_4$][C$_2$H$_5$NH$_3$]$_2$ by means of single-crystal x-ray diffraction, magnetization, heat capacity, and electron spin resonance (ESR) meas urements on polycrystalline samples, as well as band-structure calculations. The triclinic crystal structure of this compound features CuO$_4$ plaquette units connected into a two-dimensional framework through anions of the pyromellitic acid [C$_6$H$_2$(COO)$_4$]$^{4-}$. The ethylamine cations [C$_2$H$_5$NH$_3]^+$ are located between the layers and act as spacers. Magnetic susceptibility and heat capacity measurements establish a quasi-two-dimensional, weakly anisotropic and non-frustrated spin-$frac12$ square lattice with the ratio of the couplings $J_a/J_csimeq 0.7$ along the $a$ and $c$ directions, respectively. No clear signatures of the long-range magnetic order are seen in thermodynamic measurements down to 1.8,K. However, the gradual broadening of the ESR line suggests that magnetic ordering occurs at lower temperatures. Leading magnetic couplings are mediated by the organic anion of the pyromellitic acid and exhibit a non-trivial dependence on the Cu--Cu distance, with the stronger coupling between those Cu atoms that are further apart.
New intercalation superconductors of Li$_x$(C$_2$H$_8$N$_2$)$_y$TiSe$_2$ and Li$_x$(C$_6$H$_{16}$N$_2$)$_y$TiSe$_2$ with $T_{rm c}$ = 4.2 K have successfully been synthesized via the co-intercalation of lithium and ethylenediamine or hexamethylenedia mine into 1T-TiSe$_2$. Moreover, it has been found that both intercalation compounds of Li$_x$TiSe$_2$ and (C$_2$H$_8$N$_2$)$_y$TiSe$_2$ also show superconductivity with $T_{rm c}$ = 2.4 K and 2.8 K, respectively. These results indicate that both the electron doping due to the intercalation of lithium and the expansion of the interlayer spacing between TiSe2 layers due to the intercalation of diamines suppress the charge density wave in 1T-TiSe$_2$, leading to the appearance of superconductivity.
The electron paramagnetic resonance study for an organic superconductor $beta$-(BEDT-TTF)$_{4}$[(H$_3$O)Ga(C$_2$O$_4$)$_3$]$cdot$C$_6$H$_5$NO$_2$ reveals that superconductivity coexists uniformly with the charge ordered state in one material. In the charge ordered state, the interplane spin exchange is gapped, while the in-plane conductivity is not significantly modified. This anisotropic behavior is explained by the exotic charge ordered state, in which molecular-site selective carrier localization coexists with conducting carriers on other molecules. Relationship between superconductivity and this conductive charge ordered state is investigated.
We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunn eling (CVT/$mu$OMT) were applied using a fitted potential energy surface [J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval $ 4 cdot 10^{-20}$ to $4 cdot 10^{-17}$ cm$^3$ s$^{-1}$ , demonstrating that even deuterat
We report the crystal growth and structural and magnetic properties of quasi two-dimensional $S=1/2$ quantum magnet Cu[C$_6$H$_2$(COO)$_4$][H$_3$N-(CH$_2$)$_2$-NH$_3$]$cdot$3H$_2$O. It is found to crystallize in a monoclinic structure with space grou p $C2/m$. The CuO$_4$ plaquettes are connected into a two-dimensional framework in the $ab$-plane through the anions of [C$_6$H$_2$(COO)$_4$]$^{4-}$ (pyromellitic acid). The [H$_3$N-(CH$_2$)$_2$-NH$_3$]$^{2+}$$cdot$3H$_2$O groups are located between the layers and provide a weak interlayer connection via hydrogen (H...O) bonds. The temperature dependent magnetic susceptibility is well described by $S=1/2$ frustrated square lattice ($J_1-J_2$) model with nearest-neighbor interaction $J_1/k_{rm B} simeq 5.35$ K and next-nearest-neighbor interaction $J_2/k_{rm B} simeq -0.01$ K. Even, our analysis using frustrated rectangular lattice ($J_{1a,b}-J_2$) model confirms almost isotropic nearest-neighbour interactions ($J_{rm 1a}/k_{rm B} simeq 5.31$ K and $J_{rm 1b}/k_{rm B} simeq 5.38$ K) in the $ab$-plane and $J_2/k_{rm B}simeq-0.24$ K. Further, the isothermal magnetization at $T=1.9$ K is also well described by a non-frustrated square lattice model with $J_1/k_{rm B} simeq 5.2$ K. Based on the $J_2/J_1$ ratio, the compound can be placed in the N{e}el antiferromagnetic state of the $J_1 - J_2$ phase diagram. No signature of magnetic long-range-order was detected down to 2 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا