ﻻ يوجد ملخص باللغة العربية
Some properties of a Local discontinuous Galerkin (LDG) algorithm are demonstrated for the problem of evaluting a second derivative $g = f_{xx}$ for a given $f$. (This is a somewhat unusual problem, but it is useful for understanding the initial transient response of an algorithm for diffusion equations.) LDG uses an auxiliary variable to break this up into two first order equations and then applies techniques by analogy to DG algorithms for advection algorithms. This introduces an asymmetry into the solution that depends on the choice of upwind directions for these two first order equations. When using piecewise linear basis functions, this LDG solution $g_h$ is shown not to converge in an $L_2$ norm because the slopes in each cell diverge. However, when LDG is used in a time-dependent diffusion problem, this error in the second derivative term is transient and rapidly decays away, so that the overall error is bounded. I.e., the LDG approximation $f_h(x,t)$ for a diffusion equation $partial f / partial t = f_{xx}$ converges to the proper solution (as has been shown before), even though the initial rate of change $partial f_h / partial t$ does not converge. We also show results from the Recovery discontinuous Galerkin (RDG) approach, which gives symmetric solutions that can have higher rates of convergence for a stencil that couples the same number of cells.
In this paper, we develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the Maxwells equations coupled with the hydrodynamic model for the conduction-band electrons in metals. By means of a static condensation to elim
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large-scale wave-propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with non-reflective boundary treatm
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or
We present a generic technique, automated by computer-algebra systems and available as open-source software cite{scuff-em}, for efficient numerical evaluation of a large family of singular and nonsingular 4-dimensional integrals over triangle-product
This work discusses the application of an affine reconstructed nodal DG method for unstructured grids of triangles. Solving the diffusion terms in the DG method is non-trivial due to the solution representations being piecewise continuous. Hence, the