ﻻ يوجد ملخص باللغة العربية
We have performed Ce $L_3$-edge x-ray absorption spectroscopy (XAS) measurements on CeO$_{1-x}$F$_x$BiS$_2$, in which the superconductivity of the BiS$_2$ layer and the ferromagnetism of the CeO$_{1-x}$F$_x$ layer are induced by the F-doping, in order to investigate the impact of the F-doping on the local electronic and lattice structures. The Ce $L_3$-edge XAS spectrum of CeOBiS$_2$ exhibits coexistence of $4f^1$ (Ce$^{3+}$) and $4f^0$ (Ce$^{4+}$) state transitions revealing Ce mixed valency in this system. The spectral weight of the $4f^0$ state decreases with the F-doping and completely disappears for $x>0.4$ where the system shows the superconductivity and the ferromagnetism. The results suggest that suppression of Ce-S-Bi coupling channel by the F-doping appears to drive the system from the valence fluctuation regime to the Kondo-like regime, leading to the coexistence of the superconducting BiS$_2$ layer and the ferromagnetic CeO$_{1-x}$F$_x$ layer.
Bulk magnetization, transport and neutron scattering measurements were performed to investigate the electronic and magnetic properties of a polycrystalline sample of the newly discovered ferromagnetic superconductor, CeO$_{0.3}$F$_{0.7}$BiS$_{2}$. Fe
We investigated Ce-substitution and reduction annealing effects on the electronic states at copper sites by Cu ${K}$-edge x-ray absorption near-edge structure measurements in Pr$_{2-x}$Ce$_x$CuO$_{4+alpha-delta}$ (PCCO) with varying $x$ and $delta$ (
A good description of the electronic structure of BiS$_{2}$-based superconductors is essential to understand their phase diagram, normal state and superconducting properties. To describe the first reports of normal state electronic structure features
We use core level and valence band soft x-ray photoemission spectroscopy (SXPES) to investigate electronic structure of new BiS$_{2}$ layered superconductor LaO$_{1-x}$F$_{x}$BiS$_{2}$. Core level spectra of doped samples show a new spectral feature
We report specific heat and neutron scattering experiments performed on the system Ce$_{1-x}$La$_{x}$Ru$_{2}$Si$_{2}$ on the magnetic side of its quantum critical phase diagram. The Kondo temperature does not vanish at the quantum phase transition an