ﻻ يوجد ملخص باللغة العربية
We use core level and valence band soft x-ray photoemission spectroscopy (SXPES) to investigate electronic structure of new BiS$_{2}$ layered superconductor LaO$_{1-x}$F$_{x}$BiS$_{2}$. Core level spectra of doped samples show a new spectral feature at the lower binding energy side of the Bi 4${f}$ main peak, which may be explained by core-hole screening with metallic states near the Fermi level ($E_{rm F}$). Experimental electronic structure and its ${x}$ dependence (higher binding energy shift of the valence band as well as appearance of new states near $E_{rm F}$ having dominant Bi 6${p}$ character) were found to be consistent with the predictions of band structure calculations in general. Noticeable deviation of the spectral shape of the states near $E_{rm F}$ from that of calculations might give insight into the interesting physical properties. These results provide first experimental electronic structure of the new BiS$_{2}$ layered superconductors.
The newly discovered BiS$_2$-based LaO$_{1-x}$F$_{x}$BiS$_2$ ($x$=0.5) becomes superconductive at $T_c$=2.5 K. Electrical resistivity and magnetization measurements are performed under pressure to determine the pressure dependence of the superconduct
A good description of the electronic structure of BiS$_{2}$-based superconductors is essential to understand their phase diagram, normal state and superconducting properties. To describe the first reports of normal state electronic structure features
We measure the magnetic penetration depth $Deltalambda(T)$ for NdO$_{1-x}$F$_{x}$BiS$_{2}$ ($x$ = 0.3 and 0.5) using the tunnel diode oscillator technique. The $Deltalambda(T)$ shows an upturn in the low-temperature limit which is attributed to the p
F-doped LaOBiSe$_{2}$ superconducting single crystals with typical size of 2$times$4$times$0.2 mm$^{3}$ are successfully grown by flux method and the superconducting properties are studied. Both the superconducting transition temperature and the shie
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is obs