ﻻ يوجد ملخص باللغة العربية
The avalanche mechanism has been used to relate Efimov trimer states to certain enhanced atom loss features observed in ultracold atom gas experiments. These atom loss features are argued to be a signature of resonant atom-molecule scattering that occurs when an Efimov trimer is degenerate with the atom-molecule scattering threshold. However, observation of these atom loss features has yet to be combined with the direct observation of atom-molecule resonant scattering for any particular atomic species. In addition, recent Monte-Carlo simulations were unable to reproduce a narrow loss feature. We experimentally search for enhanced atom loss features near an established scattering resonance between 40K87Rb Feshbach molecules and 87Rb atoms. Our measurements of both the three-body recombination rate in a gas of 40K and 87Rb atoms and the ratio of the number loss for the two species do not show any broad loss feature and are therefore inconsistent with theoretical predictions that use the avalanche mechanism.
Recent cold atom experiments report a surprising universal scaling of the first Efimov resonance position a_{-}^1 by the two-body van der Waals length r_{vdW}. The ratio C=-a_{-}^1/r_{vdW}=8.5~9.5 for identical particles appears to be a constant rega
We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-univers
The field of few-body physics has originally been motivated by understanding nuclear matter. New model systems to experimentally explore few-body quantum systems can now be realized in ultracold gases with tunable interactions. Albeit the vastly diff
In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though ea
The discrete Efimov scaling behavior, well-known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of atom-molecule elastic cross-section in mass imbalanced sys