ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of an Efimov spectrum in an atomic system

314   0   0.0 ( 0 )
 نشر من قبل Benjamin Deissler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though each particle pair cannot bind. Interestingly, the properties of these aggregates, such as the peculiar geometric scaling of their energy spectrum, are universal, i.e. independent of the microscopic details of their components. Despite an extensive search in many different physical systems, including atoms, molecules and nuclei, the characteristic spectrum of Efimov trimer states still eludes observation. Here we report on the discovery of two bound trimer states of potassium atoms very close to the Efimov scenario, which we reveal by studying three-particle collisions in an ultracold gas. Our observation provides the first evidence of an Efimov spectrum and allows a direct test of its scaling behaviour, shedding new light onto the physics of few-body systems.



قيم البحث

اقرأ أيضاً

We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-univers al g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.
We convert a strongly interacting ultracold Bose gas into a mixture of atoms and molecules by sweeping the interactions from resonant to weak. By analyzing the decay dynamics of the molecular gas, we show that in addition to Feshbach dimers it contai ns Efimov trimers. Typically around 8% of the total atomic population is bound into trimers, identified by their density-independent lifetime of about 100~$mu$s. The lifetime of the Feshbach dimers shows a density dependence due to inelastic atom-dimer collisions, in agreement with theoretical calculations. We also vary the density of the gas across a factor of 250 and investigate the corresponding atom loss rate at the interaction resonance.
We propose to dynamically control the conductivity of a Josephson junction composed of two weakly coupled one dimensional condensates of ultracold atoms. A current is induced by a periodically modulated potential difference between the condensates, g iving access to the conductivity of the junction. By using parametric driving of the tunneling energy, we demonstrate that the low-frequency conductivity of the junction can be enhanced or suppressed, depending on the choice of the driving frequency. The experimental realization of this proposal provides a quantum simulation of optically enhanced superconductivity in pump-probe experiments of high temperature superconductors.
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from e.g. cavity loss. This makes them a tool to study dissipative phases, an emerging subject in quantum manybody physics. Here we experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase, characterized by a biexponential decay of the condensates second-order coherence. The phase transition occurs due to the emergence of an exceptional point in the quantum gas. While Bose-Einstein condensation is usually connected to ordinary lasing by a smooth crossover, the observed phase transition separates the novel, biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our findings pave the way for studies of a wide class of dissipative quantum phases, for instance in topological or lattice systems.
We theoretically and experimentally explore the emergence of a dynamical density wave order in a driven dissipative atom-cavity system. A Bose-Einstein condensate is placed inside a high finesse optical resonator and pumped sideways by an optical sta nding wave. The pump strength is chosen to induce a stationary superradiant checkerboard density wave order of the atoms stabilized by a strong intracavity light field. We show theoretically that, when the pump is modulated with sufficient strength at a frequency $omega_{d}$ close to a systemic resonance frequency $omega_{>}$, a dynamical density wave order emerges, which oscillates at the two frequencies $omega_{>}$ and $omega_{<} = omega_{d} - omega_{>}$. This order is associated with a characteristic momentum spectrum, also found in experiments in addition to remnants of the oscillatory dynamics presumably damped by on-site interaction and heating, not included in the calculations. The oscillating density grating, associated with this order, suppresses pump-induced light scattering into the cavity. Similar mechanisms might be conceivable in light-driven electronic matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا