ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous frequency and temperature dependent scattering and Hunds coupling in the almost quantum critical heavy fermion system CeFe$_2$Ge$_2$

56   0   0.0 ( 0 )
 نشر من قبل Grace Bosse
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present THz range optical conductivity data of a thin film of the near quantum critical heavy fermion compound CeFe$_2$Ge$_2$. Our complex conductivity measurements find a deviation from conventional Drude-like transport in a temperature range previously reported to exhibit unconventional behavior. We calculate the frequency dependent effective mass and scattering rate using an extended Drude model analysis. We find the inelastic scattering rate can be described by a temperature dependent power-law $omega^{n(T)}$ where $n(T)$ approaches $sim1.0 pm 0.2$ at 1.5 K. This is compared to the $rho sim T^{1.5}$ behavior claimed in dc resistivity data and the $rho sim T^{2}$ expected from Fermi-liquid theory. In addition to a low temperature mass renormalization, we find an anomalous mass renormalization that persists to high temperature. We attribute this to a Hunds coupling in the Fe states in a manner similar to that recently proposed in the ferro-pnictides. CeFe$_2$Ge$_2$ appears to be a very interesting system where one may study the interplay between the usual $4f$ lattice Kondo effect and this Hunds enhanced Kondo effect in the $3d$ states.

قيم البحث

اقرأ أيضاً

Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$ in order to study the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for $T leq$ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP ($rho(T) sim T^{3/2}$ and $gamma(T) sim gamma_0 - b T^{1/2}$). However, for 2 $leq T leq$ 10 K, the susceptibility and specific heat vary as $log T$ and the resistivity varies linearly with temperature. Furthermore, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. We suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.
We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$, which is believed to be close to a quantum critical point (QCP) at T = 0. At lowest temperature(1.8-3.5 K), the magnetic susceptibility behaves as $chi(T)-chi (0)$ $propto$ $T^{-1/6}$ with $chi (0) = 0.032 times 10^{-6}$ m$^3$/mole (0.0025 emu/mole). For $T<$ 1 K, the specific heat can be fit to the formula $Delta C/T = gamma_0 - T^{1/2}$ with $gamma_0$ of order 700 mJ/mole-K$^2$. The resistivity behaves as $rho = rho_0 + AT^{3/2}$ for temperatures below 2 K. This low temperature behavior for $gamma (T)$ and $rho (T)$ is in accord with the SCR theory of Moriya and Takimotocite{Moriya}. The inelastic neutron scattering spectra show a broad peak near 1.5 meV that appears to be independent of $Q$; we interpret this as Kondo scattering with $T_K =$ 17 K. In addition, the scattering is enhanced near $Q$=(1/2, 1/2, 0) with maximum scattering at $Delta E$ = 0.45 meV; we interpret this as scattering from antiferromagnetic fluctuations near the antiferromagnetic QCP.
Polycrystalline samples of Ce(Cu$_{1-x}$Co$_x$)$_2$Ge$_2$ were investigated by means of electrical resistivity $rho$($T$), magnetic susceptibility $chi$($T$), specific heat $C$$_p$($T$) and thermo electric power $S$($T$) measurements. The long-range antiferromagnetic (AFM) order, which set in at $T$$_N$ = 4.1 K in CeCu$_2$Ge$_2$, is suppressed by non-iso-electronic cobalt (Co) doping at a critical value of the concentration $x$$_c$ = 0.6, accompanied by non-Fermi liquid (NFL) behavior inferred from the power law dependence of heat capacity and susceptibility i.e. $C$($T$)/$T$ and $chi$($T$) $propto$ $T$$^{-1+lambda}$ down to 0.4 K, along with a clear deviation from $T$$^2$ behavior of the electrical resistivity. However, we have not seen any superconducting phase in the quantum critical regime down to 0.4 K.
We present nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements performed on single crystalline ccag{}, a member of a recently discovered family of heavy fermion materials Ce$_2M$Al$_7$Ge$_4$ ($M$ = Co, Ir, Ni, or Pd). Previous measurements indicated a strong Kondo interaction as well as magnetic order below $T_M = 1.8$ K. Our NMR spectral measurements show that the Knight shift $K$ is proportional to the bulk magnetic susceptibility $chi$ at high temperatures. A clear Knight shift anomaly ($K otpropto chi$) is observed at coherence temperatures $T^* sim 17.5$ K for $H_0 parallel hat{c}$ and 10 K for $H_0 parallel hat{a}$ at the ${}^{59}$Co site, and $T^* sim 12.5$ K at the ${}^{27}$Al(3) site for $H_0 parallel hat{a}$ characteristic of the heavy fermion nature of this compound. At high temperatures the ${}^{59}$Co NMR spin-lattice relaxation rate $T_1^{-1}$ is dominated by spin fluctuations of the 4$f$ local moments with a weak metallic background. The spin fluctuations probed by ${}^{59}$Co NMR are anisotropic and larger in the basal plane than in the $c$ direction. Furthermore, we find $(T_1TK)^{-1} propto T^{-1/2}$ at the ${}^{59}$Co site as expected for a Kondo system for $T > T^*$ and $T> T_K$. ${}^{59}$Co NQR slrr{} measurements at low temperatures indicate slowing down of spin fluctuations above the magnetic ordering temperature $T_M sim 1.8$ K. A weak ferromagnetic character of fluctuations around $mathbf{q}=0$ is evidenced by an increase of $chi T$ versus $T$ above the magnetic ordering temperature. We also find good agreement between the observed and calculated electric field gradients at all observed sites.
Systems with embedded magnetic ions that exhibit a competition between magnetic order and disorder down to absolute zero can display unusual low temperature behaviors of the resistivity, susceptibility, and specific heat. Moreover, the dynamic respon se of such a system can display hyperscaling behavior in which the relaxation back to equilibrium when an amount of energy E is given to the system at temperature T only depends on the ratio E/T. Ce(Fe$_{0.755}$Ru$_{0.245}$)$_2$Ge$_2$ is a system that displays these behaviors. We show that these complex behaviors are rooted in a fragmentation of the magnetic lattice upon cooling caused by a distribution of local Kondo screening temperatures, and that the hyperscaling behavior can be attributed to the flipping of the total magnetic moment of magnetic clusters that spontaneously form and order upon cooling. We present our arguments based on the review of two-decades worth of neutron scattering and transport data on this system, augmented with new polarized neutron scattering experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا