ﻻ يوجد ملخص باللغة العربية
Finite heat reservoir capacity and temperature fluctuations lead to modification of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, we derive a deformed entropy, K(S). The resulting formula contains the Boltzmann-Gibbs, the Renyi and the Tsallis formulas as particular cases. For extreme large fluctuations (compared to the Gaussian case) a new, parameter-free entropy - probability relation emerges. This formula and the corresponding canonical equilibrium distribution are nearly Boltzmannian for high probability, but deviate from the classical result for low probability. In the extreme large fluctuation limit the canonical distribution resembles for low probability the cumulative Gompertz distribution.
This paper studies Langevin equation with random damping due to multiplicative noise and its solution. Two types of multiplicative noise, namely the dichotomous noise and fractional Gaussian noise are considered. Their solutions are obtained explicit
Starting from the well-known field theory for directed percolation, we describe an evolving population, near extinction, in an environment with its own nontrivial spatio-temporal dynamics. Here, we consider the special case where the environment foll
Current implementations of fluctuating lattice Boltzmann equations (FLBE) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the e
Numerical and analytic results for the exponent theta describing the decay of the first return probability of an interface to its initial height are obtained for a large class of linear Langevin equations. The models are parametrized by the dynamic r
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling dela