ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observation of the interacting galaxies NGC1512 and NGC1510

317   0   0.0 ( 0 )
 نشر من قبل Lorenzo Ducci
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Ducci




اسأل ChatGPT حول البحث

The galaxy NGC1512 is interacting with the smaller galaxy NGC1510 and shows a peculiar morphology, characterised by two extended arms immersed in an HI disc whose size is about four times larger than the optical diameter of NGC1512. For the first time we performed a deep X-ray observation of the galaxies NGC1512 and NGC1510 with XMM-Newton to gain information on the population of X-ray sources and diffuse emission in a system of interacting galaxies. We identified and classified the sources detected in the XMM-Newton field of view by means of spectral analysis, hardness-ratios calculated with a Bayesian method, X-ray variability, and cross-correlations with catalogues in optical, infrared, and radio wavelengths. We also made use of archival Swift (X-ray) and Australia Telescope Compact Array (radio) data to better constrain the nature of the sources detected with XMM-Newton. We detected 106 sources in the energy range of 0.2-12 keV, out of which 15 are located within the D_25 regions of NGC1512 and NGC1510 and at least six sources coincide with the extended arms. We identified and classified six background objects and six foreground stars. We discussed the nature of a source within the D_25 ellipse of NGC1512, whose properties indicate a quasi-stellar object or an intermediate ultra-luminous X-ray source. Taking into account the contribution of low-mass X-ray binaries and active galactic nuclei, the number of high-mass X-ray binaries detected within the D_25 region of NGC1512 is consistent with the star formation rate obtained in previous works based on radio, infrared optical, and UV wavelengths. We detected diffuse X-ray emission from the interior region of NGC1512 with a plasma temperature of kT=0.68(0.31-0.87) keV and a 0.3-10 keV X-ray luminosity of 1.3E38 erg/s, after correcting for unresolved discrete sources.



قيم البحث

اقرأ أيضاً

We investigate the X-ray properties of three interacting luminous infrared galaxy systems. In one of these systems, IRAS 18329+5950, we resolve two separate sources. A second, IRAS 20550+1656, and third, IRAS 19354+4559, have only a single X-ray sour ce detected. We compare the observed emission to PSF profiles and determine that three are extended in emission. One is compact, which is suggestive of an AGN, although all of our profiles have large uncertainties. We then model the spectra to determine soft (0.5--2 keV) and hard (2--10 keV) luminosities for the resolved sources and then compare these to relationships found in the literature between infrared and X-ray luminosities for starburst galaxies. We obtain luminosities of $log(L_{textrm{soft}}/textrm{L}_{odot}) = 7.32,:7.06,:7.68$ and $log(L_{textrm{hard}}/textrm{L}_{odot}) = 7.33,: 7.07,: 7.88$ for IRAS 18329+5950, IRAS 19354+4559, and IRAS 20550+1656, respectively. These are intermediate to two separate predictions in the literature for star-formation-dominated sources. Our highest quality spectrum of IRAS 20550+1656 suggests super-solar abundance of alpha elements at $2sigma$ significance, with $log(frac{alpha}{alpha_{odot}}) = [alpha] = 0.4pm0.2$. This is suggestive of recent enrichment with Type II supernovae, consistent with a starburst environment. The X-ray properties of the target galaxies are most likely due to starbursts, but we cannot conclusively rule out AGN.
111 - C. Y. Hui 2011
We have investigated the pulsar PSR B2224+65 and its X-ray jet with XMM-Newton. Apart from the long X-ray jet which is almost perpendicular to the direction of proper motion, a putative extended feature at the pulsar position, which oriented in the o pposite direction of the proper motion, is also suggested by this deep X-ray imaging. Non-detection of any coherent X-ray pulsation disfavors the magnetospheric origin of the X-rays observed from the position of PSR B2224+65 and hence suggest that the interpretation of pulsar wind nebula is more viable. We have also probed the origin of PSR B2224+65 and identified a runaway star, which possibly originated from the Cygnus OB9 association, as a candidate for the former binary companion of the neutron stars progenitor.
We report on an X-ray observation of the 166 Myr old radio pulsar J0108-1431 with XMM-Newton. The X-ray spectrum can be described by a power-law model with a relatively steep photon index Gamma~3 or by a combination of thermal and non-thermal compone nts, e.g., a power-law component with fixed photon index Gamma~2 plus a blackbody component with a temperature of kT=0.11 keV. The two-component model appears more reasonable considering different estimates for the hydrogen column density. The non-thermal X-ray efficiency in the single power-law model is eta^PL (1-10 keV) = L^PL (1-10 keV) / Edot ~ 0.003, higher than in most other X-ray detected pulsars. In the case of the combined model, the non-thermal and thermal X-ray efficiencies are even higher, eta^PL (1-10 keV) ~ eta^bb ~ 0.006. We detected X-ray pulsations at the radio period of P=0.808s with significance of 7sigma. The pulse shape in the folded X-ray lightcurve (0.15-2 keV) is asymmetric, with statistically significant contributions from up to 5 leading harmonics. Pulse profiles at two different energy ranges differ slightly: the profile is asymmetric at low energies, 0.15-1 keV, while at higher energies, 1-2 keV, it has a nearly sinusodial shape. The radio pulse peak leads the 0.15-2 keV X-ray pulse peak by delta phi = 0.06 +/- 0.03.
The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Diffuse X-ray emission from the interior of the SNR can reveal element abundances in the different emission regions and shed light on the type of supernova (SN) explosion and its progenitor. The hard X-ray emission helps to identify possible candidates for a pulsar formed in the SN explosion and for its pulsar wind nebula (PWN). We have analysed X-ray data obtained with XMM-Newton. Spectral analyses in selected regions were performed. Ejecta emission in the bright western part of the SNR, located next to a complex of dense molecular gas, was confirmed. The Ne and Mg abundances suggest a massive progenitor with a mass of > 20 M_sun. Two extended regions emitting hard X-rays were identified (corresponding to the known sources [KLS2002] HX3 west and CXO J192318.5+140305 discovered with ASCA and Chandra, respectively), each of which has an additional point source inside and shows a power-law spectrum with Gamma ~ 1.8. Based on their X-ray emission, both sources can be classified as PWN candidates.
We present results from the XMM-Newton observation of the non-cooling flow cluster A1060. Large effective area of XMM-Newton enables us to investigate the nature of this cluster in unprecedented detail. From the observed surface brightness distributi on, we have found that the gravitational mass distribution is well described by the NFW profile but with a central density slope of ~1.5. We have undoubtedly detected a radial temperature decrease of as large as ~30% from the center to the outer region (r ~13), which seems much larger than that expected from the temperature profile averaged over nearby clusters. We have established that the temperature of the region ~7 southeast of the center is higher than the azimuthally averaged temperature of the same radius by ~20%. Since the pressure of this region already reaches equilibrium with the environment, the temperature structure can be interpreted as having been produced between 4*10^7 yr (the sound-crossing time) and 3*10^8 yr (the thermal conduction time) ago. We have found that the high-metallicity blob located at ~1.5 northeast of NGC 3311 is more extended and its iron mass of 1.9*10^7 M_solar is larger by an order of magnitude than estimated from our Chandra observation. The amount of iron can still be considered as being injected solely from the elliptical galaxy NGC3311.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا