ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observation of the very old pulsar J0108-1431

158   0   0.0 ( 0 )
 نشر من قبل Bettina Posselt
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an X-ray observation of the 166 Myr old radio pulsar J0108-1431 with XMM-Newton. The X-ray spectrum can be described by a power-law model with a relatively steep photon index Gamma~3 or by a combination of thermal and non-thermal components, e.g., a power-law component with fixed photon index Gamma~2 plus a blackbody component with a temperature of kT=0.11 keV. The two-component model appears more reasonable considering different estimates for the hydrogen column density. The non-thermal X-ray efficiency in the single power-law model is eta^PL (1-10 keV) = L^PL (1-10 keV) / Edot ~ 0.003, higher than in most other X-ray detected pulsars. In the case of the combined model, the non-thermal and thermal X-ray efficiencies are even higher, eta^PL (1-10 keV) ~ eta^bb ~ 0.006. We detected X-ray pulsations at the radio period of P=0.808s with significance of 7sigma. The pulse shape in the folded X-ray lightcurve (0.15-2 keV) is asymmetric, with statistically significant contributions from up to 5 leading harmonics. Pulse profiles at two different energy ranges differ slightly: the profile is asymmetric at low energies, 0.15-1 keV, while at higher energies, 1-2 keV, it has a nearly sinusodial shape. The radio pulse peak leads the 0.15-2 keV X-ray pulse peak by delta phi = 0.06 +/- 0.03.



قيم البحث

اقرأ أيضاً

PSR J0108-1431 is a nearby, 170 Myr old, very faint radio pulsar near the pulsar death line in the P-Pdot diagram. We observed the pulsar field with the Chandra X-ray Observatory and detected a point source (53 counts in a 30 ks exposure, energy flux (9+/-2)times 10^{-15} ergs cm^{-2} s^{-1} in the 0.3-8 keV band) close to the radio pulsar position. Based on the large X-ray/optical flux ratio at the X-ray source position, we conclude that the source is the X-ray counterpart of PSR J0108-1431.The pulsar spectrum can be described by a power-law model with photon index Gamma approx 2.2 and luminosity L_{0.3-8 keV} sim 2times 10^{28} d_{130}^2 ergs s^{-1}, or by a blackbody model with the temperature kTapprox 0.28 keV and bolometric luminosity L_{bol} sim 1.3times 10^{28} d_{130}^2 ergs s^{-1}, for a plausible hydrogen column density NH = 7.3times 10^{19} cm^{-2} (d_{130}=d/130 pc). The pulsar converts sim 0.4% of its spin-down power into the X-ray luminosity, i.e., its X-ray efficiency is higher than for most younger pulsars. From the comparison of the X-ray position with the previously measured radio positions, we estimated the pulsar proper motion of 0.2 arcsec yr^{-1} (V_perp sim 130 d_{130} km s^{-1}), in the south-southeast direction.
162 - R.P. Mignani 2008
The multi-wavelength study of old (>100 Myr) radio pulsars holds the key to understanding the long-term evolution of neutron stars, including the advanced stages of neutron star cooling and the evolution of the magnetosphere. Optical/UV observations are particularly useful for such studies because they allow one to explore both thermal and non-thermal emission processes. In particular, studying the optical/UV emission constrains temperature of the bulk of the neutron star surface, too cold to be measured in X-ray observations.Aim of this work is to identify the optical counterpart of the very old (166 Myr) radio pulsar J0108-1431. We have re-analyzed our original VLT observations (Mignani et al. 2003), where a very faint object was tentatively detected close to the radio position, near the edge of a field galaxy. We found that the backward extrapolation of the PSR J0108-1431 proper motion recently measured by CHANDRA(Pavlov et al. 2008) nicely fits the position of this object. Based on that, we propose it as a viable candidate for the optical counterpart to PSR J0108-1431. The object fluxes (U =26.4+/-0.3; B =27.9; V >27.8) are consistent with a thermal spectrum with a brightness temperature of 9X10^4 K (for R = 13 km at a distance of 130 pc), emitted from the bulk of the neutron star surface. New optical observations are required to confirm the optical identification of PSR J0108-1431 and measure its spectrum.
117 - N. La Palombara 2011
Many X-ray accreting pulsars have a soft excess below 10 keV. This feature has been detected also in faint sources and at low luminosity levels, suggesting that it is an ubiquitous phenomenon. In the case of the high luminosity pulsars (Lx > 10^36 er g/s), the fit of this component with thermal emission models usually provides low temperatures (kT < 0.5 keV) and large emission regions (R > a few hundred km); for this reason, it is referred to as a `soft excess. On the other hand, we recently found that in persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 100 s) Be accreting pulsars the observed excess can be modeled with a rather hot (kT > 1 keV) blackbody component of small area (R < 0.5 km), which can be interpreted as emission from the NS polar caps. In this paper we present the results of a recent XMM-Newton observation of the Galactic Be pulsar RX J0440.9+4431, which is a poorly studied member of this class of sources. We have found a best-fit period P = 204.96(+/-0.02) s, which implies an average pulsar spin-down during the last 13 years, with dP/dt ~ 6x10^(-9) s/s. The estimated source luminosity is Lx ~ 8x10^(34) erg/s: this value is higher by a factor < 10 compared to those obtained in the first source observations, but almost two orders of magnitude lower than those measured during a few outbursts detected in the latest years. The source spectrum can be described with a power law plus blackbody model, with kTbb = 1.34(+/-0.04) keV and Rbb = 273(+/-16) m, suggesting a polar-cap origin of this component. Our results support the classification of RX J0440.9+4431 as a persistent Be/NS pulsar, and confirm that the hot blackbody spectral component is a common property of this class of sources.
100 - M. N. Iacolina 2015
The relativistic double neutron star binary PSR J0737-3039 shows clear evidence of orbital phase-dependent wind-companion interaction, both in radio and X-rays. In this paper we present the results of timing analysis of PSR J0737-3039 performed durin g 2006 and 2011 XMM-Newton Large Programs that collected ~20,000 X-ray counts from the system. We detected pulsations from PSR J0737-3039A (PSR A) through the most accurate timing measurement obtained by XMM-Newton so far, the spin period error being of 2x10^-13 s. PSR As pulse profile in X-rays is very stable despite significant relativistic spin precession that occurred within the time span of observations. This yields a constraint on the misalignment between the spin axis and the orbital momentum axis Delta_A ~6.6^{+1.3}_{-5.4} deg, consistent with estimates based on radio data. We confirmed pulsed emission from PSR J0737-3039B (PSR B) in X-rays even after its disappearance in radio. The unusual phenomenology of PSR Bs X-ray emission includes orbital pulsed flux and profile variations as well as a loss of pulsar phase coherence on time scales of years. We hypothesize that this is due to the interaction of PSR As wind with PSR Bs magnetosphere and orbital-dependent penetration of the wind plasma onto PSR B closed field lines. Finally, the analysis of the full XMM-Newton dataset provided evidences of orbital flux variability (~7%) for the first time, involving a bow-shock scenario between PSR As wind and PSR Bs magnetosphere.
310 - L. Ducci 2014
The galaxy NGC1512 is interacting with the smaller galaxy NGC1510 and shows a peculiar morphology, characterised by two extended arms immersed in an HI disc whose size is about four times larger than the optical diameter of NGC1512. For the first tim e we performed a deep X-ray observation of the galaxies NGC1512 and NGC1510 with XMM-Newton to gain information on the population of X-ray sources and diffuse emission in a system of interacting galaxies. We identified and classified the sources detected in the XMM-Newton field of view by means of spectral analysis, hardness-ratios calculated with a Bayesian method, X-ray variability, and cross-correlations with catalogues in optical, infrared, and radio wavelengths. We also made use of archival Swift (X-ray) and Australia Telescope Compact Array (radio) data to better constrain the nature of the sources detected with XMM-Newton. We detected 106 sources in the energy range of 0.2-12 keV, out of which 15 are located within the D_25 regions of NGC1512 and NGC1510 and at least six sources coincide with the extended arms. We identified and classified six background objects and six foreground stars. We discussed the nature of a source within the D_25 ellipse of NGC1512, whose properties indicate a quasi-stellar object or an intermediate ultra-luminous X-ray source. Taking into account the contribution of low-mass X-ray binaries and active galactic nuclei, the number of high-mass X-ray binaries detected within the D_25 region of NGC1512 is consistent with the star formation rate obtained in previous works based on radio, infrared optical, and UV wavelengths. We detected diffuse X-ray emission from the interior region of NGC1512 with a plasma temperature of kT=0.68(0.31-0.87) keV and a 0.3-10 keV X-ray luminosity of 1.3E38 erg/s, after correcting for unresolved discrete sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا