ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrogen Ordering and New Polymorph of Layered Perovskite Oxyhydrides: Sr2VO4-xHx

426   0   0.0 ( 0 )
 نشر من قبل Joonho Bang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compositionally tunable vanadium oxyhydrides Sr2VO4-xHx (x = 0 - 1) without considerable anion vacancy were synthesized by high-pressure solid state reaction. The crystal structures and their properties were characterized by powder neutron diffraction, synchrotron X-ray diffraction, thermal desorption spectroscopy, and first-principles density functional theory (DFT) calculations. The hydrogen anions selectively replaced equatorial oxygen sites in the VO6 layers via statistical substitution of hydrogen in the low x region (x < 0.2). A new orthorhombic phase (Immm) with an almost entirely hydrogen-ordered structure formed from the K2NiF4-type tetragonal phase with x > 0.7. Based on the DFT calculations, the degree of oxygen/hydrogen anion ordering is strongly correlated with the bonding interaction between vanadium and the ligands.



قيم البحث

اقرأ أيضاً

Organic-inorganic layered perovskites are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitation s with substantial binding energies that are strongly coupled to the surrounding soft, polar lattice. However, the ligand environment in layered perovskites can significantly alter their optical properties due to the complex dynamic disorder of soft perovskite lattice. Here, we observe the dynamic disorder through phonon dephasing lifetimes initiated by ultrafast photoexcitation employing high-resolution resonant impulsive stimulated Raman spectroscopy of a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively independent of the lattice temperature. Relaxation in aromatic amine based layered perovskite is slower, though still fast relative to pure inorganic lead bromide lattices, with a rate that is temperature dependent. Using molecular dynamics simulations, we explain the fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes with the ligand layers and rationalize the temperature independence due to their amorphous packing. This work provides a molecular and time-domain depiction of the relaxation of nascent optical excitations and opens opportunities to understand how they couple to the complex layered perovskite lattice, elucidating design principles for optoelectronic devices.
Anionic ordering is a promising route to engineer physical properties in functional heteroanionic materials. A central challenge in the study of anion-ordered compounds lies in developing robust synthetic strategies to control anion occupation and in understanding the resultant implications for electronic structure. Here, we show that epitaxial strain induces preferential occupation of F and O on the anion sites in perovskite oxyfluoride SrMnO2.5-dFg films grown on different substrates. Under compressive strain, F tends to take the apical-like sites, which was revealed by F and O K-edge linearly polarized x-ray absorption spectroscopy and density functional theory calculations, resulting in an enhanced c-axis expansion. Under tensile strain, F tends to take the equatorial-like sites, enabling the longer Mn-F bonds to lie within the plane. The anion ordered oxyfluoride films exhibit a significant orbital polarization of the 3d electrons, distinct F-site dependence to their valence band density of states, and an enhanced resistivity when F occupies the apical-like anion site compared to the equatorial-like site. By demonstrating a general strategy for inducing anion-site order in oxyfluoride perovskites, this work lays the foundation for future materials design and synthesis efforts that leverage this greater degree of atomic control to realize new polar or quasi-two-dimensional materials.
YBaCuFeO5 is one of the interesting multiferroic compounds, which exhibits magnetic ordering and dielectric anomaly above 200 K. Partial substitution of Fe with other magnetic and non-magnetic ion affects the magnetic and the structural properties of the system. We report detailed investigation of structural, magnetic and dielectric properties of YBaCuFe0.85M0.15O5 (M=Co, Ni and Ga). We observed that the partial replacement of Ni and Co in place of Fe, results in magnetic dilution and broadening of the magnetic transition and shifting towards lower temperature. The replacement of Fe with non-magnetic Ga also results in shifting of the magnetic transition to the lower temperature side. The observed dielectric relaxation behavior in these compounds is due to the charge carrier hoping. This study highlights the impacts of magnetic and non-magnetic doping at the magnetic site on magnetic and dielectric properties in layered perovskite compound YBaCuFeO5.
We report the understanding of the electronic band structure of $Cs_4CuSb_2Cl_{12}$ perovskite through first-principles density-functional theory calculations. We find that the most stable state has the antiferromagnetic configuration where each $[Cu Cl_6]$ octahedral chain along the [010] direction is antiferromagnetic. The reasonable band structure of the compound can be obtained only if both the correct magnetic order and the improved exchange interaction of the Cu $it{d}$ electrons are taken into account.
We have tested the concept of image charge screening as a new approach to enhance magnetic ordering temperatures and superexchange interactions in ultra thin films. Using a 3 monolayer NiO(100) film grown on Ag(100) and an identically thin film on Mg O(100) as model systems, we observed that the Neel temperature of the NiO film on the highly polarizable metal substrate is 390 K while that of the film on the poorly polarizable insulator substrate is below 40 K. This demonstrates that screening by highly polarizable media may point to a practical way towards designing strongly correlated oxide nanostructures with greatly improved magnetic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا