ﻻ يوجد ملخص باللغة العربية
We present experiments in which an ultra-cold sample of ammonia molecules is released from an electrostatic trap and recaptured after a variable time. It is shown that, by performing adiabatic cooling before releasing the molecules and adiabatic re-compression after they are recaptured, we are able to observe molecules even after more than 10 ms of free expansion. A coherent measurement performed during this time will have a statistical uncertainty that decreases approximately as the inverse of the square root of the expansion time. This offers interesting prospects for high-resolution spectroscopy and precision tests of fundamental physics theories.
Ultra-cold atomic gases are unique in terms of the degree of controllability, both for internal and external degrees of freedom. This makes it possible to use them for the study of complex quantum many-body phenomena. However in many scenarios, the p
One of the most striking features of the strong interactions between Rydberg atoms is the dipole blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spati
We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate t
We present the first spatially resolved images of spin waves in a gas. The complete longitudinal and transverse spin field as a function of time and space is reconstructed. Frequencies and damping rates for a standing-wave mode are extracted and compared with theory.
We have reflected a Stark-decelerated beam of OH molecules under normal incidence from mirrors consisting of permanent magnets. Two different types of magnetic mirrors have been demonstrated. A long-range flat mirror made from a large disc magnet has