ﻻ يوجد ملخص باللغة العربية
Boolean networks are used to model biological networks such as gene regulatory networks. Often Boolean networks show very chaotic behaviour which is sensitive to any small perturbations. In order to reduce the chaotic behaviour and to attain stability in the gene regulatory network, nested Canalizing Functions (NCFs) are best suited. NCFs and its variants have a wide range of applications in systems biology. Previously, many works were done on the application of canalizing functions, but there were fewer methods to check if any arbitrary Boolean function is canalizing or not. In this paper, by using Karnaugh Map this problem is solved and also it has been shown that when the canalizing functions of variable is given, all the canalizing functions of variable could be generated by the method of concatenation. In this paper we have uniquely identified the number of NCFs having a particular Hamming Distance (H.D) generated by each variable as starting canalizing input. Partially NCFs of 4 variables has also been studied in this paper.
Boolean networks are used to model biological networks such as gene regulatory networks. Often Boolean networks show very chaotic behavior which is sensitive to any small perturbations.In order to reduce the chaotic behavior and to attain stability i
Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting
The subject of this textbook is the analysis of Boolean functions. Roughly speaking, this refers to studying Boolean functions $f : {0,1}^n to {0,1}$ via their Fourier expansion and other analytic means. Boolean functions are perhaps the most basic o
Observabililty is an important topic of Boolean control networks (BCNs). In this paper, we propose a new type of observability named online observability to present the sufficient and necessary condition of determining the initial states of BCNs, whe
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this defin