ترغب بنشر مسار تعليمي؟ اضغط هنا

Filtering out activity-related variations from radial velocities in a search for low-mass planets

110   0   0.0 ( 0 )
 نشر من قبل Mikko Tuomi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variations related to stellar activity and correlated noise can prevent the detections of low-amplitude signals in radial velocity data if not accounted for. This can be seen as the greatest obstacle in detecting Earth-like planets orbiting nearby stars with Doppler spectroscopy regardless of developments in instrumentation and rapidly accumulating amounts of data. We use a statistical model that is not sensitive to aperiodic and/or quasiperiodic variability of stellar origin. We demonstrate the performance of our model by re-analysing the radial velocities of the moderately active star CoRoT-7 ($log R_{rm HK} = -4.61$) with a transiting planet whose Doppler signal has proven rather difficult to detect. We find that the signal of the transiting planet can be robustly detected together with signals of two other planet candidates. Our results suggest that rotation periods of moderately active stars can be filtered out of the radial velocity noise, which enables the detections of low-mass planets orbiting such stars.

قيم البحث

اقرأ أيضاً

We report the detection of a new planetary system orbiting the nearby M2.5V star GJ357, using precision radial-velocities from three separate echelle spectrographs, HARPS, HiRES, and UVES. Three small planets have been confirmed in the system, with p eriods of 9.125+/-0.001, 3.9306+/-0.0003, and 55.70+/-0.05 days, and minimum masses of 3.33+/-0.48, 2.09+/-0.32, and 6.72+/-0.94 Me, respectively. The second planet in our system, GJ357c, was recently shown to transit by the Transiting Exoplanet Survey Satellite (TESS; Luque et al. 2019), but we could find no transit signatures for the other two planets. Dynamical analysis reveals the system is likely to be close to coplanar, is stable on Myrs timescales, and places strong upper limits on the masses of the two non-transiting planets b and d of 4.25 and 11.20 Me, respectively. Therefore, we confirm the system contains at least two super-Earths, and either a third super-Earth or mini-Neptune planet. GJ357b & c are found to be close to a 7:3 mean motion resonance, however no libration of the orbital parameters was found in our simulations. Analysis of the photometric lightcurve of the star from the TESS, when combined with our radial-velocities, reveal GJ357c has an absolute mass, radius, and density of 2.248+0.117-0.120 Me, 1.167+0.037-0.036 Re, and 7.757+0.889-0.789 g/cm3, respectively. Comparison to super-Earth structure models reveals the planet is likely an iron dominated world. The GJ357 system adds to the small sample of low-mass planetary systems with well constrained masses, and further observational and dynamical follow-up is warranted to better understand the overall population of small multi-planet systems in the solar neighbourhood.
This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system $alpha$ Centauri using the Doppler method. Owing to the small angular separation between the two components of the $alpha$ Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-$alpha$ and NaD lines. Furthermore, we have developed a modified version of a well established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve radial velocity precision of $sim 2.5,mathrm{m,s^{-1}}$ for a given night of observations. We have also applied this new Doppler code to four southern double-lined spectroscopic binary systems (HR159, HR913, HR7578, HD181958) and have successfully recovered radial velocities for both components simultaneously.
Stellar activity can induce signals in the radial velocities of stars, complicating the detection of orbiting low-mass planets. We present a method to determine the number of planetary signals present in radial-velocity datasets of active stars, usin g only radial-velocity observations. Instead of considering separate fits with different number of planets, we use a birth-death Markov chain Monte Carlo algorithm to infer the posterior distribution for the number of planets in a single run. In a natural way, the marginal distributions for the orbital parameters of all planets are also inferred. This method is applied to HARPS data of CoRoT-7. We confidently recover both CoRoT-7b and CoRoT-7c although the data show evidence for additional signals.
We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R$_oplus$ and an upper limit on the mass of 20 M$_oplus$. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b, over 8 quarters of Kepler photometry, although neither mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, we measured through dynamical simulations a mass of $8.4 pm 1.6$ M$_oplus$ for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of $13.1 pm 2.7$ M$_oplus$ for Kepler-19c and discovered a Neptune-like planet with a mass of $20.3 pm 3.4$ M$_oplus$ on a 63 days orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that could hamper the precision in the orbital parameters when the dataset spans several years. With a density of $4.32 pm 0.87$ g cm$^{-3}$ ($0.78 pm 0.16$ $rho_oplus$) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized by transit-time variations only and the increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.
We present FIES@NOT, HARPS-N@TNG, and [email protected] radial velocity follow-up observations of K2-19, a compact planetary system hosting three planets, of which the two larger ones, namely K2-19b and K2-19c, are close to the 3:2 mean motion resonance . An analysis considering only the radial velocity measurements detects K2-19b, the largest and most massive planet in the system, with a mass of $54.8pm7.5$~M${_oplus}$ and provides a marginal detection of K2-19c, with a mass of M$_mathrm{c}$=$5.9^{+7.6}_{-4.3}$ M$_oplus$. We also used the TRADES code to simultaneously model both our RV measurements and the existing transit-timing measurements. We derived a mass of $54.4pm8.9$~M${_oplus}$ for K2-19b and of $7.5^{+3.0}_{-1.4}$~M${_oplus}$ for K2-19c. A prior K2-19b mass estimated by Barros et al. 2015, based principally on a photodynamical analysis of K2-19s light-curve, is consistent with both analysis, our combined TTV and RV analysis, and with our analysis based purely on RV measurements. Differences remain mainly in the errors of the more lightweight planet, driven likely by the limited precision of the RV measurements and possibly some yet unrecognized systematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا