ﻻ يوجد ملخص باللغة العربية
Small amounts of pre-solar grains have survived in the matrices of primitive meteorites and interplanetary dust particles. Their detailed study in the laboratory with modern analytical tools provides highly accurate and detailed information with regard to stellar nucleosynthesis and evolution, grain formation in stellar atmospheres, and Galactic Chemical Evolution. Their survival puts constraints on conditions they were exposed to in the interstellar medium and in the Early Solar System.
M giants are among the longest-period pulsating stars which is why their studies were traditionally restricted to analyses of low-precision visual observations, and more recently, accurate ground-based data. Here we present an overview of M giant var
For 6 years the Convection, Rotation, and Planetary Transits (CoRoT) space mission has acquired photometric data from more than one hundred thousand point sources towards and directly opposite from the inner and outer regions of the Galaxy. The high
The unparalleled photometric data obtained by NASAs Kepler space telescope led to an improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccent
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter
Kepler allows the measurement of starspot variability in a large sample of field red giants for the first time. With a new method that combines autocorrelation and wavelet decomposition, we measure 361 rotation periods from the full set of 17,377 osc