ترغب بنشر مسار تعليمي؟ اضغط هنا

The planetary nebula nature and properties of IRAS18197-1118

134   0   0.0 ( 0 )
 نشر من قبل Luis F. Miranda
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IRAS18197-1118 is a stellar-like object that has been classified as a planetary nebula from its radio continuum emission and high [SIII]9532 to Paschen9 line intensity ratio, as derived from direct images. We present intermediate- and high-resolution, optical spectroscopy, VLA 8.46 GHz radio continuum data, and narrow-band optical images of IRAS18197-1118 aimed at confirming its planetary nebula nature, and analyzing its properties. The optical spectrum shows that IRAS18197-1118 is a medium-excitation planetary nebula suffering a high extinction (c(H_beta) ~3.37). The optical images do not resolve the object but the 8.46 GHz image reveals an elliptical shell of ~2.7x1.6 arcsec^2 in size, a compact central nebular region, and possible bipolar jet-like features, indicating several ejection events. The existence of a compact central nebula makes IRAS18197-1118 singular because this kind of structure is observed in a few PNe only. An expansion velocity ~20 km/s and a systemic velocity (LSR) ~+95 km/s are obtained for the object. An electron density of ~3.4x10^4 cm-3 and an ionized mass of ~2.1x10^-2 M_sun are deduced from the 8.46 GHz radio continuum data for an estimated statistical distance of 6 kpc. Helium abundance is high but nitrogen is not enriched, which is not consistently reproduced by evolutionary models, suggesting different abundances in the elliptical shell and central region. The properties of IRAS18197-1118 indicate a relatively young planetary nebula, favor a distance of >~6 kpc, and strongly suggest that it is an inner-disc planetary nebula.

قيم البحث

اقرأ أيضاً

Planetary Nebulae (PNe) are amongst the most spectacular objects produced by stellar evolution, but the exact identity of their progenitors has never been established for a large and homogeneous observational sample. We investigate the relationship b etween PNe and their stellar progenitors in the Large Magellanic Cloud (LMC) through the statistical comparison between a highly complete spectroscopic catalog of PNe and the spatially resolved age distribution of the underlying stellar populations. We find that most PN progenitors in the LMC have main-sequence lifetimes in a narrow range between 5 and 8 Gyr, which corresponds to masses between 1.2 and 1.0 M$_{odot}$, and produce PNe that last $26^{+6}_{-7}$~kyr on average. We tentatively detect a second population of PN progenitors, with main-sequence lifetimes between 35 and 800~Myr, i.e., masses between 8.2 and 2.1 M$_{odot}$, and average PN lifetimes of $11^{+6}_{-7}$ kyr. These two distinct and disjoint populations of progenitors strongly suggest the existence of at least two physically distinct formation channels for PNe. Our determination of PN lifetimes and progenitor masses has implications for the understanding of PNe in the context of stellar evolution models, and for the role that rotation, magnetic fields, and binarity can play in the shaping of PN morphologies.
We investigate the circumstellar dust properties of the oxygen-rich bipolar proto-planetary nebula IRAS 18276-1431 by means of two-dimensional radiative transfer simulations of the circumstellar dust shell. The model geometry is assumed to have a tor us and an envelope. The parameters of the dust and the dust shell are constrained by comparing the SED and NIR intensity and polarisation data with the models. The polarisation in the envelope reaches 50 -- 60 % and is nearly constant in the H and K_S bands in the observations. This weak wavelength dependence of the polarisation can be reproduced with a grain size distribution function for the torus: 0.05 micron <= a with n(a)=a^{-(p=5.5)}exp(-a/{a_c=0.3 micron}). The power index p is significantly steeper than that for interstellar dust. Similar results have also been found in some other PPNs and suggest that mechanisms that grind down large particles may also have acted when the dust particles formed. The spectral opacity index beta is found to be 0.6+/-0.5 from the millimeter fluxes. This low value indicates the presence of large dust grains in the torus. We discuss two possible dust models for the torus. One has a size distribution function of 1.0 micron <= a <= a_max=5,000.0 micron with n(a)=a^{-(p=2.5)} and the other is 1.0 micron <= a <= a_max=10,000.0 micron with n(a)=a^{-(p=3.5)}. The former has beta of 0.633, but we are not able to find reasonable geometry parameters to fit the SED in the infrared. The latter has beta of 1.12, but reproduces the SED better over a wide wavelength range. With this dust model, the geometric parameters are estimated as follows: the inner and outer radii are 30 AU and 1000 AU and the torus mass is 3.0 M_sun. Assuming an expansion velocity of 15 kms^{-1}, the torus formation time and mass-loss rate are found to be sim300 yrs and sim10^{-2}M_sun yr^{-1} respectively.
We perform a detailed analysis of the fullerene C60-containing planetary nebula (PN) SaSt2-3 to investigate the physical properties of the central star (B0-1II) and nebula based on our own Subaru/HDS spectra and multiwavelength archival data. By asse ssing the stellar absorption, we derive the effective temperature, surface gravity, and photospheric abundances. For the first time, we report time variability of the central stars radial velocity, strongly indicating a binary central star. Comparison between the derived elemental abundances and those predicted values by asymptotic giant branch (AGB) star nucleosynthesis models indicates that the progenitor is a star with initial mass of ~1.25 Msun and metallicity Z = 0.001/alpha-element/Cl-rich ([alpha,Cl/Fe] ~ +0.3-0.4). We determine the distance (11.33 kpc) to be consistent with the post-AGB evolution of 1.25 Msun initial mass stars with Z = 0.001. Using the photoionisation model, we fully reproduce the derived quantities by adopting a cylindrically shaped nebula. We derive the mass fraction of the C-atoms present in atomic gas, graphite grain, and C60. The highest mass fraction of C60 (~0.19%) indicates that SaSt2-3 is the C60-richest PN amongst Galactic PNe. From comparison of stellar/nebular properties with other C60 PNe, we conclude that the C60 formation depends on the central stars properties and its surrounding environment (e.g., binary disc), rather than the amount of C-atoms produced during the AGB phase.
113 - K. B. Kwitter 2014
We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.
The ACIS-S camera on board the Chandra X-ray Observatory has been used to discover a hot bubble in the planetary nebula (PN) IC4593, the most distant PN detected by Chandra so far. The data are used to study the distribution of the X-ray-emitting gas in IC 4593 and to estimate its physical properties. The hot bubble has a radius of ~2$^{primeprime}$ and is found to be confined inside the optically-bright innermost cavity of IC 4593. The X-ray emission is mostly consistent with that of an optically-thin plasma with temperature $kTapprox0.15$ keV (or $T_mathrm{X}approx1.7times10^{6}$ K), electron density $n_mathrm{e}approx15$ cm$^{-3}$, and intrinsic X-ray luminosity in the 0.3-1.5 keV energy range $L_mathrm{X}=3.4times10^{30}$ erg s$^{-1}$. A careful analysis of the distribution of hard ($E>$0.8 keV) photons in IC 4593 suggests the presence of X-ray emission from a point source likely associated with its central star (CSPN). If this were the case, its estimated X-ray luminosity would be $L_mathrm{X,CSPN}=7times10^{29}$ erg s$^{-1}$, fulfilling the log$(L_mathrm{X,CSPN}/L_mathrm{bol})approx-7$ relation for self-shocking winds in hot stars. The X-ray detection of the CSPN helps explain the presence of high-ionisation species detected in the UV spectra as predicted by stellar atmosphere models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا