ﻻ يوجد ملخص باللغة العربية
Given a type I von Neumann algebra $M$ with a faithful normal semi-finite trace $tau,$ let $S_0(M, tau)$ be the algebra of all $tau$-compact operators affiliated with $M.$ We give a complete description of all derivations on the algebra $S_0(M, tau).$ In particular, we prove that if $M$ is of type I$_infty$ then every derivation on $S_0(M, tau)$ is spatial.
Given a von Neumann algebra $M$ denote by $S(M)$ and $LS(M)$ respectively the algebras of all measurable and locally measurable operators affiliated with $M.$ For a faithful normal semi-finite trace $tau$ on $M$ let $S(M, tau)$ (resp. $S_0(M, tau)$)
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann
We study differential operators on complete Riemannian manifolds which act on sections of a bundle of finite type modules over a von Neumann algebra with a trace. We prove a relative index and a Callias-type index theorems for von Neumann indexes of
The Kubo-Ando theory deals with connections for positive bounded operators. On the other hand, in various analysis related to von Neumann algebras it is impossible to avoid unbounded operators. In this article we try to extend a notion of connections
We show that certain amenable subgroups inside $tilde{A}_2$-groups are singular in the sense of Boutonnet and Carderi. This gives a new family of examples of singular group von Neumann subalgebras. We also give a geometric proof that if $G$ is an acy