ترغب بنشر مسار تعليمي؟ اضغط هنا

STEP: The VST survey of the SMC and the Magellanic Bridge. I. Overview and first results

190   0   0.0 ( 0 )
 نشر من قبل Vincenzo Ripepi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

STEP (the SMC in Time: Evolution of a Prototype interacting late-type dwarf galaxy) is a Guaranteed Time Observation survey being performed at the VST (the ESO VLT Survey Telescope). STEP will image an area of 74 deg$^2$ covering the main body of the Small Magellanic Cloud (32 deg$^2$), the Bridge that connects it to the Large Magellanic Cloud (30 deg$^2$) and a small part of the Magellanic Stream (2 deg$^2$). Our $g,r,i,H_{alpha}$ photometry is able to resolve individual stars down to magnitudes well below the main-sequence turnoff of the oldest populations. In this first paper we describe the observing strategy, the photometric techniques, and the upcoming data products of the survey. We also present preliminary results for the first two fields for which data acquisition is completed, including some detailed analysis of the two stellar clusters IC,1624 and NGC,419.



قيم البحث

اقرأ أيضاً

STREGA (STRucture and Evolution of the GAlaxy) is a Guaranteed Time survey being performed at the VST (the ESO VLT Survey Telescope) to map about 150 square degrees in the Galactic halo, in order to constrain the mechanisms of galactic formation and evolution. The survey is built as a five-year project, organized in two parts: a core program to explore the surrounding regions of selected stellar systems and a second complementary part to map the southern portion of the Fornax orbit and extend the observations of the core program. The adopted stellar tracers are mainly variable stars (RR~Lyraes and Long Period Variables) and Main Sequence Turn-off stars for which observations in the g,r,i bands are obtained. We present an overview of the survey and some preliminary results for three observing runs that have been completed. For the region centered on $omega$~Cen (37 deg^2), covering about three tidal radii, we also discuss the detected stellar density radial profile and angular distribution, leading to the identification of extratidal cluster stars. We also conclude that the cluster tidal radius is about 1.2 deg, in agreement with values in the literature based on the Wilson model.
We present an overview of, and first science results from, the Magellanic Edges Survey (MagES), an ongoing spectroscopic survey mapping the kinematics of red clump and red giant branch stars in the highly substructured periphery of the Magellanic Clo uds. In conjunction with Gaia astrometry, MagES yields a sample of ~7000 stars with individual 3D velocities that probes larger galactocentric radii than most previous studies. We outline our target selection, observation strategy, data reduction and analysis procedures, and present results for two fields in the northern outskirts ($>10^{circ}$ on-sky from the centre) of the Large Magellanic Cloud (LMC). One field, located in the vicinity of an arm-like overdensity, displays apparent signatures of perturbation away from an equilibrium disk model. This includes a large radial velocity dispersion in the LMC disk plane, and an asymmetric line-of-sight velocity distribution indicative of motions vertically out of the disk plane for some stars. The second field reveals 3D kinematics consistent with an equilibrium disk, and yields $V_{text{circ}}=87.7pm8.0$km s$^{-1}$ at a radial distance of ~10.5kpc from the LMC centre. This leads to an enclosed mass estimate for the LMC at this radius of $(1.8pm0.3)times10^{10}text{M}_{odot}$.
We present the goals, strategy and first results of the OmegaWhite survey: a wide-field high-cadence $g$-band synoptic survey which aims to unveil the Galactic population of short-period variable stars (with periods $<$ 80 min), including ultracompac t binary star systems and stellar pulsators. The ultimate goal of OmegaWhite is to cover 400 square degrees along the Galactic Plane reaching a depth of $g = $ 21.5 mag (10$sigma$), using OmegaCam on the VLT Survey Telescope (VST). The fields are selected to overlap with surveys such as the Galactic Bulge Survey (GBS) and the VST Photometric H$alpha$ Survey of the Southern Galactic Plane (VPHAS+) for multi-band colour information. Each field is observed using 38 exposures of 39 s each, with a median cadence of $sim$2.7 min for a total duration of two hours. Within an initial 26 square degrees, we have extracted the light curves of 1.6 million stars, and have identified 613 variable candidates which satisfy our selection criteria. Furthermore, we present the light curves and statistical properties of 20 sources which have the highest-likelihood of being variable stars. One of these candidates exhibits the colours and light curve properties typically associated with ultracompact AM CVn binaries, although its spectrum exhibits weak Balmer absorption lines and is thus not likely to be such a binary system. We also present follow-up spectroscopy of five other variable candidates, which identifies them as likely low-amplitude $delta$ Sct pulsating stars.
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {it{Spitzer}} and {it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses $m_*sim10$--50$:M_odot$ accreting at $sim10^{-4}$--$10^{-3}:M_odot:{rm{yr}}^{-1}$ inside cores of initial masses $M_csim30$--500$:M_odot$ embedded in clumps with mass surface densities $Sigma_{rm{cl}}sim0.1$--3$:{rm{g:cm}^{-2}}$. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $sim100times$ smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.
We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more th an 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allows us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and $463~text{km} : text{s}^{-1}$ fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا