ترغب بنشر مسار تعليمي؟ اضغط هنا

The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

171   0   0.0 ( 0 )
 نشر من قبل Jonathan C. Tan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {it{Spitzer}} and {it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses $m_*sim10$--50$:M_odot$ accreting at $sim10^{-4}$--$10^{-3}:M_odot:{rm{yr}}^{-1}$ inside cores of initial masses $M_csim30$--500$:M_odot$ embedded in clumps with mass surface densities $Sigma_{rm{cl}}sim0.1$--3$:{rm{g:cm}^{-2}}$. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $sim100times$ smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

قيم البحث

اقرأ أيضاً

We present multi-wavelength images observed with SOFIA-FORCAST from $sim$10 to 40 $mu$m of seven high luminosity massive protostars, as part of the SOFIA Massive (SOMA) Star Formation Survey. Source morphologies at these wavelengths appear to be infl uenced by outflow cavities and extinction from dense gas surrounding the protostars. Using these images, we build spectral energy distributions (SEDs) of the protostars, also including archival data from Spitzer, Herschel and other facilities. Radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, are then fit to the SEDs to estimate key properties of the protostars. Considering the best five models fit to each source, the protostars have masses $m_{*} sim 12-64 : M_{odot}$ accreting at rates of $dot{m}_{*} sim 10^{-4}-10^{-3} : M_{odot} : rm yr^{-1}$ inside cores of initial masses $M_{c} sim 100-500 : M_{odot}$ embedded in clumps with mass surface densities $Sigma_{rm cl} sim 0.1-3 : rm g : cm^{-2}$ and span a luminosity range of $10^{4} -10^{6} : L_{odot}$. Compared with the first eight protostars in Paper I, the sources analyzed here are more luminous, and thus likely to be more massive protostars. They are often in a clustered environment or have a companion protostar relatively nearby. From the range of parameter space of the models, we do not see any evidence that $Sigma_{rm cl}$ needs to be high to form these massive stars. For most sources the RT models provide reasonable fits to the SEDs, though the cold clump material often influences the long wavelength fitting. However, for sources in very clustered environments, the model SEDs may not be such a good description of the data, indicating potential limitations of the models for these regions.
We present $sim10-40,mu$m SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions (SEDs), also utilizing archival Spitzer, Herschel and IRAS d ata. We then fit the SEDs with radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, SOMA protostars span luminosities from $sim10^{2}-10^{6}:L_{odot}$, current protostellar masses from $sim0.5-30:M_{odot}$ and ambient clump mass surface densities, $Sigma_{rm cl}$ from $0.1-3:{rm{g:cm}^{-2}}$. A wide range of evolutionary states of the individual protostars and of the protocluster environments are also probed. We have also considered about 50 protostars identified in Infrared Dark Clouds and expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. From the best fitting models, there is no evidence of a threshold value of protocluster clump mass surface density being needed to form protostars up to $sim25:M_odot$. However, to form more massive protostars, there is tentative evidence that $Sigma_{rm{cl}}$ needs to be $gtrsim1:{rm{g,cm}}^{-2}$. We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
The Hubble Tarantula Treasury Project (HTTP) is an ongoing panchromatic imaging survey of stellar populations in the Tarantula Nebula in the Large Magellanic Cloud that reaches into the sub-solar mass regime (< 0.5 Mo). HTTP utilizes the capability o f HST to operate the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3) in parallel to study this remarkable region in the near-ultraviolet, optical, and near-infrared spectral regions, including narrow band H$alpha$ images. The combination of all these bands provides a unique multi-band view. The resulting maps of the stellar content of the Tarantula Nebula within its main body provide the basis for investigations of star formation in an environment resembling the extreme conditions found in starburst galaxies and in the early Universe. Access to detailed properties of individual stars allows us to begin to reconstruct the evolution of the stellar skeleton of the Tarantula Nebula over space and time with parcsec-scale resolution. In this first paper we describe the observing strategy, the photometric techniques, and the upcoming data products from this survey and present preliminary results obtained from the analysis of the initial set of near-infrared observations.
Searches for slow radio transients and variables have generally focused on extragalactic populations, and the basic parameters of Galactic populations remain poorly characterized. We present a large 3 GHz survey performed with the Allen Telescope Arr ay (ATA) that aims to improve this situation: ASGARD, the ATA Survey of Galactic Radio Dynamism. ASGARD observations spanned 2 years with weekly visits to 23 deg^2 in two fields in the Galactic Plane, totaling 900 hr of integration time on science fields and making it significantly larger than previous efforts. The typical blind unresolved source detection limit was 10 mJy. We describe the observations and data analysis techniques in detail, demonstrating our ability to create accurate wide-field images while effectively modeling and subtracting large-scale radio emission, allowing standard transient-and-variability analysis techniques to be used. We present early results from the analysis of two pointings: one centered on the microquasar Cygnus X-3 and one overlapping the Kepler field of view (l = 76{deg}, b = +13.5{deg}). Our results include images, catalog statistics, completeness functions, variability measurements, and a transient search. Out of 134 sources detected in these pointings, the only compellingly variable one is Cygnus X-3, and no transients are detected. We estimate number counts for potential Galactic radio transients and compare our current limits to previous work and our projection for the fully-analyzed ASGARD dataset.
Surveys of the Milky Way at various wavelengths have changed our view of star formation in our Galaxy considerably in recent years. In this paper we give an overview of the GLOSTAR survey, a new survey covering large parts (145 square degrees) of the northern Galactic plane using the Karl G. Jansky Very Large Array (JVLA) in the frequency range 4-8 GHz and the Effelsberg 100-m telescope. This provides for the first time a radio survey covering all angular scales down to 1.5 arcsecond, similar to complementary near-IR and mid-IR galactic plane surveys. We outline the main goals of the survey and give a detailed description of the observations and the data reduction strategy. In our observations we covered the radio continuum in full polarization, as well as the 6.7 GHz methanol maser line, the 4.8~GHz formaldehyde line, and seven radio recombination lines. The observations were conducted in the most compact D configuration of the VLA and in the more extended B configuration. This yielded spatial resolutions of 18 and 1.5 for the two configurations, respectively. We also combined the D configuration images with the Effelsberg 100-m data to provide zero spacing information, and we jointly imaged the D- and B-configuration data for optimal sensitivity of the intermediate spatial ranges. Here we show selected results for the first part of the survey, covering the range of 28 deg <l<36 deg and |b|< 1 deg, including the full low-resolution continuum image, examples of high-resolution images of selected sources, and the first results from the spectral line data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا