ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of Cooperation in Non-scale-free Networks

112   0   0.0 ( 0 )
 نشر من قبل Yichao Zhang
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a Prisoners Dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.



قيم البحث

اقرأ أيضاً

Networks with a scale-free degree distribution are widely thought to promote cooperation in various games. Herein, by studying the well-known prisoners dilemma game, we demonstrate that this need not necessarily be true. For the very same degree sequ ence and degree distribution, we present a variety of possible behaviour. We reassess the perceived importance of hubs in a network towards the maintenance of cooperation. We also reevaluate the dependence of cooperation on network clustering and assortativity.
Despite the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by th e local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter -- the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree.
We give an intuitive though general explanation of the finite-size effect in scale-free networks in terms of the degree distribution of the starting network. This result clarifies the relevance of the starting network in the final degree distribution . We use two different approaches: the deterministic mean-field approximation used by Barabasi and Albert (but taking into account the nodes of the starting network), and the probability distribution of the degree of each node, which considers the stochastic process. Numerical simulations show that the accuracy of the predictions of the mean-field approximation depend on the contribution of the dispersion in the final distribution. The results in terms of the probability distribution of the degree of each node are very accurate when compared to numerical simulations. The analysis of the standard deviation of the degree distribution allows us to assess the influence of the starting core when fitting the model to real data.
We study the evolutionary Prisoners Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both net works. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding perfect agreement with the observations in the real networks. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.
132 - Victor M. Eguiluz 2007
By means of extensive computer simulations, the authors consider the entangled coevolution of actions and social structure in a new version of a spatial Prisoners Dilemma model that naturally gives way to a process of social differentiation. Diverse social roles emerge from the dynamics of the system: leaders are individuals getting a large payoff who are imitated by a considerable fraction of the population, conformists are unsatisfied cooperative agents that keep cooperating, and exploiters are defectors with a payoff larger than the average one obtained by cooperators. The dynamics generate a social network that can have the topology of a small world network. The network has a strong hierarchical structure in which the leaders play an essential role in sustaining a highly cooperative stable regime. But disruptions affecting leaders produce social crises described as dynamical cascades that propagate through the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا