ﻻ يوجد ملخص باللغة العربية
A Lie group is called $p$-regular if it has the $p$-local homotopy type of a product of spheres. (Non)triviality of the Samelson products of the inclusions of the factor spheres into $p$-regular $mathrm{SO}(2n)_{(p)}$ is determined, which completes the list of (non)triviality of such Samelson products in $p$-regular simple Lie groups. As an application, we determine the homotopy normality of the inclusion $mathrm{SO}(2n-1)tomathrm{SO}(2n)$ in the sense of James at any prime $p$.
The (non)triviality of Samelson products of the inclusions of the spheres into p-regular exceptional Lie groups is completely determined, where a connected Lie group is called p-regular if it has the p-local homotopy type of a product of spheres.
There is a product decomposition of a compact connected Lie group $G$ at the prime $p$, called the mod $p$ decomposition, when $G$ has no $p$-torsion in homology. Then in studying the multiplicative structure of the $p$-localization of $G$, the Samel
We show that the tensor product of two cyclic $A_infty$-algebras is, in general, not a cyclic $A_infty$-algebra, but an $A_infty$-algebra with homotopy inner product. More precisely, we construct an explicit combinatorial diagonal on the pairahedra,
A p-compact group is a mod p homotopy theoretical analogue of a compact Lie group. It is determined the homotopy nilpotency class of a p-compact group having the homotopy type of the $p$-completion of the direct product of spheres.
The primary goal of this paper is to study Spanier-Whitehead duality in the $K(n)$-local category. One of the key players in the $K(n)$-local category is the Lubin-Tate spectrum $E_n$, whose homotopy groups classify deformations of a formal group law