ترغب بنشر مسار تعليمي؟ اضغط هنا

Some remarkable new Plethystic Operators in the Theory of Macdonald Polynomials

138   0   0.0 ( 0 )
 نشر من قبل Emily Leven
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the 90s a collection of Plethystic operators were introduced in [3], [7] and [8] to solve some Representation Theoretical problems arising from the Theory of Macdonald polynomials. This collection was enriched in the research that led to the results which appeared in [5], [6] and [9]. However since some of the identities resulting from these efforts were eventually not needed, this additional work remained unpublished. As a consequence of very recent publications [4], [11], [19], [20], [21], a truly remarkable expansion of this theory has taken place. However most of this work has appeared in a language that is virtually inaccessible to practitioners of Algebraic Combinatorics. Yet, these developments have led to a variety of new conjectures in [2] in the Combinatorics and Symmetric function Theory of Macdonald Polynomials. The present work results from an effort to obtain in an elementary and accessible manner all the background necessary to construct the symmetric function side of some of these new conjectures. It turns out that the above mentioned unpublished results provide precisely the tools needed to carry out this project to its completion.



قيم البحث

اقرأ أيضاً

143 - Kentaro Nagao 2007
We have two constructions of the level-$(0,1)$ irreducible representation of the quantum toroidal algebra of type $A$. One is due to Nakajima and Varagnolo-Vasserot. They constructed the representation on the direct sum of the equivariant K-groups of the quiver varieties of type $hat{A}$. The other is due to Saito-Takemura-Uglov and Varagnolo-Vasserot. They constructed the representation on the q-deformed Fock space introduced by Kashiwara-Miwa-Stern. In this paper we give an explicit isomorphism between these two constructions. For this purpose we construct simultaneous eigenvectors on the q-Fock space using nonsymmetric Macdonald polynomials. Then the isomorphism is given by corresponding these vectors to the torus fixed points on the quiver varieties.
This work lies across three areas (in the title) of investigation that are by themselves of independent interest. A problem that arose in quantum computing led us to a link that tied these areas together. This link consists of a single formal power s eries with a multifaced interpretation. The deeper exploration of this link yielded results as well as methods for solving some numerical problems in each of these separate areas.
We provide elementary identities relating the three known types of non-symmetric interpolation Macdonald polynomials. In addition we derive a duality for non-symmetric interpolation Macdonald polynomials. We consider some applications of these result s, in particular for binomial formulas involving non-symmetric interpolation Macdonald polynomials.
The braid arrangement is the Coxeter arrangement of the type $A_ell$. The Shi arrangement is an affine arrangement of hyperplanes consisting of the hyperplanes of the braid arrangement and their parallel translations. In this paper, we give an explic it basis construction for the derivation module of the cone over the Shi arrangement. The essential ingredient of our recipe is the Bernoulli polynomials.
Let $lambda in P^{+}$ be a level-zero dominant integral weight, and $w$ an arbitrary coset representative of minimal length for the cosets in $W/W_{lambda}$, where $W_{lambda}$ is the stabilizer of $lambda$ in a finite Weyl group $W$. In this paper, we give a module $mathbb{K}_{w}(lambda)$ over the negative part of a quantum affine algebra whose graded character is identical to the specialization at $t = infty$ of the nonsymmetric Macdonald polynomial $E_{w lambda}(q,,t)$ multiplied by a certain explicit finite product of rational functions of $q$ of the form $(1 - q^{-r})^{-1}$ for a positive integer $r$. This module $mathbb{K}_{w}(lambda)$ (called a level-zero van der Kallen module) is defined to be the quotient module of the level-zero Demazure module $V_{w}^{-}(lambda)$ by the sum of the submodules $V_{z}^{-}(lambda)$ for all those coset representatives $z$ of minimal length for the cosets in $W/W_{lambda}$ such that $z > w$ in the Bruhat order $<$ on $W$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا